Shin Dong Hoon, Heo Hwan, Song Soohwa, Shin Na-Young, Nam Yoonho, Yoo Sang-Won, Kim Joong-Seok, Yoon Jung Han, Lee Seon Heui, Sung Young Hee, Kim Eung Yeop
Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea.
Heuron Co.,Ltd, Incheon, Republic of Korea, Incheon, Republic of Korea.
Parkinsonism Relat Disord. 2021 Apr;85:84-90. doi: 10.1016/j.parkreldis.2021.03.004. Epub 2021 Mar 17.
Despite its use in determining nigrostriatal degeneration, the lack of a consistent interpretation of nigrosome 1 susceptibility map-weighted imaging (SMwI) limits its generalized applicability. To implement and evaluate a diagnostic algorithm based on convolutional neural networks for interpreting nigrosome 1 SMwI for determining nigrostriatal degeneration in idiopathic Parkinson's disease (IPD).
In this retrospective study, we enrolled 267 IPD patients and 160 control subjects (125 patients with drug-induced parkinsonism and 35 healthy subjects) at our institute, and 24 IPD patients and 27 control subjects at three other institutes on approval of the local institutional review boards. Dopamine transporter imaging served as the reference standard for the presence or absence of abnormalities of nigrosome 1 on SMwI. Diagnostic performance was compared between visual assessment by an experienced neuroradiologist and the developed deep learning-based diagnostic algorithm in both internal and external datasets using a bootstrapping method with 10000 re-samples by the "pROC" package of R (version 1.16.2).
The area under the receiver operating characteristics curve (AUC) (95% confidence interval [CI]) per participant by the bootstrap method was not significantly different between visual assessment and the deep learning-based algorithm (internal validation, .9622 [0.8912-1.0000] versus 0.9534 [0.8779-0.9956], P = .1511; external validation, 0.9367 [0.8843-0.9802] versus 0.9208 [0.8634-0.9693], P = .6267), indicative of a comparable performance to visual assessment.
Our deep learning-based algorithm for assessing abnormalities of nigrosome 1 on SMwI was found to have a comparable performance to that of an experienced neuroradiologist.
尽管黑质小体1敏感性图谱加权成像(SMwI)可用于确定黑质纹状体变性,但其缺乏一致的解读限制了其广泛应用。本研究旨在实施并评估基于卷积神经网络的诊断算法,用于解读黑质小体1 SMwI以确定特发性帕金森病(IPD)中的黑质纹状体变性。
在这项回顾性研究中,我们纳入了本机构的267例IPD患者和160名对照者(125例药物性帕金森综合征患者和35名健康对照者),并在其他三个机构经当地机构审查委员会批准后纳入了24例IPD患者和27名对照者。多巴胺转运体成像作为SMwI上黑质小体1有无异常的参考标准。使用R语言(版本1.16.2)的“pROC”包,通过10000次重采样的自抽样方法,比较经验丰富的神经放射科医生的视觉评估与开发的基于深度学习的诊断算法在内部和外部数据集中的诊断性能。
通过自抽样方法,每位参与者的受试者工作特征曲线下面积(AUC)(95%置信区间[CI])在视觉评估和基于深度学习的算法之间无显著差异(内部验证,0.9622[0.8912 - 1.0000]对0.9534[0.8779 - 0.9956],P = 0.1511;外部验证,0.9367[0.8843 - 0.9802]对0.9208[0.8634 - 0.9693],P = 0.6267),表明其性能与视觉评估相当。
我们基于深度学习的评估SMwI上黑质小体1异常的算法,其性能与经验丰富的神经放射科医生相当。