Welton Thomas, Hartono Septian, Lee Weiling, Teh Peik Yen, Hou Wenlu, Chen Robert Chun, Chen Celeste, Lim Ee Wei, Prakash Kumar M, Tan Louis C S, Tan Eng King, Chan Ling Ling
National Neuroscience Institute (NNI), Singapore, Singapore.
Duke-NUS Medical School, Singapore, Singapore.
Front Aging Neurosci. 2024 Aug 20;16:1425095. doi: 10.3389/fnagi.2024.1425095. eCollection 2024.
Susceptibility map weighted imaging (SMWI), based on quantitative susceptibility mapping (QSM), allows accurate nigrosome-1 (N1) evaluation and has been used to develop Parkinson's disease (PD) deep learning (DL) classification algorithms. Neuromelanin-sensitive (NMS) MRI could improve automated quantitative N1 analysis by revealing neuromelanin content. This study aimed to compare classification performance of four approaches to PD diagnosis: (1) N1 quantitative "QSM-NMS" composite marker, (2) DL model for N1 morphological abnormality using SMWI ("Heuron IPD"), (3) DL model for N1 volume using SMWI ("Heuron NI"), and (4) N1 SMWI neuroradiological evaluation.
PD patients ( = 82; aged 65 ± 9 years; 68% male) and healthy-controls ( = 107; 66 ± 7 years; 48% male) underwent 3 T midbrain MRI with T2*-SWI multi-echo-GRE (for QSM and SMWI), and NMS-MRI. AUC was used to compare diagnostic performance. We tested for correlation of each imaging measure with clinical parameters (severity, duration and levodopa dosing) by Spearman-Rho or Kendall-Tao-Beta correlation.
Classification performance was excellent for the QSM-NMS composite marker (AUC = 0.94), N1 SMWI abnormality (AUC = 0.92), N1 SMWI volume (AUC = 0.90), and neuroradiologist (AUC = 0.98). Reasons for misclassification were right-left asymmetry, through-plane re-slicing, pulsation artefacts, and thin N1. In the two DL models, all 18/189 (9.5%) cases misclassified by Heuron IPD were controls with normal N1 volumes. We found significant correlation of the SN QSM-NMS composite measure with levodopa dosing (rho = -0.303, = 0.006).
Our data demonstrate excellent performance of a quantitative QSM-NMS marker and automated DL PD classification algorithms based on midbrain MRI, while suggesting potential further improvements. Clinical utility is supported but requires validation in earlier stage PD cohorts.
基于定量磁化率成像(QSM)的磁化率图加权成像(SMWI)能够准确评估黑质小体-1(N1),并已用于开发帕金森病(PD)深度学习(DL)分类算法。神经黑色素敏感(NMS)MRI可以通过揭示神经黑色素含量来改善N1的自动定量分析。本研究旨在比较四种PD诊断方法的分类性能:(1)N1定量“QSM-NMS”复合标记物;(2)使用SMWI对N1形态异常进行诊断的DL模型(“Heuron IPD”);(3)使用SMWI对N1体积进行诊断的DL模型(“Heuron NI”);(4)N1的SMWI神经放射学评估。
PD患者(n = 82;年龄65±9岁;68%为男性)和健康对照者(n = 107;66±7岁;48%为男性)接受了3T中脑MRI检查,包括T2 *-SWI多回波GRE序列(用于QSM和SMWI)以及NMS-MRI。使用曲线下面积(AUC)比较诊断性能。我们通过Spearman-Rho或Kendall-Tao-Beta相关性检验每种成像测量值与临床参数(严重程度、病程和左旋多巴剂量)之间的相关性。
QSM-NMS复合标记物(AUC = 0.94)、N1的SMWI异常(AUC = 0.92)、N1的SMWI体积(AUC = 0.90)和神经放射科医生(AUC = 0.98)的分类性能均优异。分类错误的原因包括左右不对称、层面间重新切片、搏动伪影和N1较薄。在两个DL模型中,被Heuron IPD误分类的18/189例(9.5%)病例均为N1体积正常的对照者。我们发现黑质QSM-NMS复合测量值与左旋多巴剂量之间存在显著相关性(rho = -0.303,P = 0.006)。
我们的数据表明,基于中脑MRI的定量QSM-NMS标记物和自动化DL PD分类算法具有优异的性能,同时提示了潜在的进一步改进方向。临床实用性得到了支持,但需要在早期PD队列中进行验证。