Ali Shawkat, Abbasi Pervaiz, Rehman Sajid, Ellouze Walid
Agriculture and Agri-Food Canada Atlantic Regional Office, 540863, Kentville Research and Development Centre, 32 Main Street, Kentville, Kentville, Nova Scotia, Canada, B4N 1J5;
Agriculture and Agri-Food Canada, 6337, Kentville Research and Development Centre, Kentville, Nova Scotia, Canada;
Plant Dis. 2021 Mar 24. doi: 10.1094/PDIS-01-21-0025-PDN.
Moldy core is a fungal disease of apple fruits that is characterized by mycelial growth in the seed locules and is sometimes accompanied by penetration of the immediate surrounding flesh. The disease can go undetected until the fruit is cut open, as no external symptoms appear on the fruit. Alternaria, Aspergillus, Cladosporium, Coniothyrium, Epicoccum, Phoma and Stemphylium are some of the common pathogens associated with moldy core (Serdani et al. 2002; Gao et al. 2013; McLeod 2014). The disease is more common in apple cultivars with an open calyx, where spores may initiate infections during the growing season or at the post-harvest storage stage (Spotts et al. 1988). In 2018, a shipment of 'Sweet Tango' apples from New Zealand to Scotian Gold Co-operative Ltd., Nova Scotia, Canada, was found to be affected by moldy core. Moderate to severe moldy core symptoms were observed when 10 apples were cut open (Figure S1). In comparison, 'Sweet Tango' apples grown in Nova Scotia showed no moldy core symptoms when 10 random fruits were cut open. Small pieces of the diseased fruit tissue from the core region were surface-disinfected for 1 min in 1% NaOCl, rinsed three times with sterilized water and placed onto potato dextrose agar (PDA) dishes. The PDA dishes were incubated in dark at 22 oC and single spore isolation was carried out to fresh PDA dishes. These isolate produced colonies of regular shape, tan black with prominent white gray margin and gray colour conidia (Figure S2 AB). The colonies turn dark black after 3 weeks of growth on PDA. Mycelia were septate and conidia were oval or obclavate or club-shaped with a tapering end with 4-6 longitudinal and transverse septa (Figure S2 C-D). The size of conidia ranges from 12.5-20 x 8.7-12.5 µM on 20 days old PDA dishes. Based on the size and shape of conidia and other morphological characteristics the isolated fungi were identical to Alternaria spp. (Simmons 2007). To assess the identity of the isolated pathogen species by multi-locus sequence analysis, genomic DNA was extracted from the pure cultures of two isolates (5.8 and 8) using the E.Z.N.A. SP Fungal DNA Kit (Omega Bio-Tek). The glyceraldehyde-3-phosphate dehydrogenase (GAPDH), major allergen (Alt a 1), OPA10-2, the internal transcribed spacer (ITS) region of ribosomal DNA and the translation elongation factor 1-α (TEF1-α) region from two Alternaria spp. isolates (5.8 and 8) were amplified and sequenced using primers gpd1/2 (Berbee et al. 1999), A21F/A21R (Gabriel 2015), OPA10-2/ OPA10-2L (Andrew et al. 2009), ITS1/ITS4 (White et al. 1990) and EF1-up /EF1-low (O'Donnell et al. 1998) respectively. The resulting sequences of both isolates were deposited in the NCBI GenBank (GAPDH; MW411052, MW411053, Alt a 1; MW411050, MW411051, OPA10-2; MW415762, MW415763, ITS; MK140445, MT225559, TEF1-α; MT305773 and MT305774 ). Sequences of GAPDH, Alt a 1, OPA-10-2, ITS and TEF1-α genes of both isolates were identical to each other and showed 100 %, 100 %, 99.21 %, 100% and 100% identity to A. arborescens S. (AY278810.1, AY563303.1, KP124712.1, KY965831.1, KY965831.1) respectively. Identity with reference strain CBS 102605 confirms that both of the isolated strains 5.8 and 8 are A. arborescens. The pathogenicity of the two A. arborescens isolates were confirmed by artificially inoculating healthy 'Sweet Tango' fruit by dispensing the conidial suspension directly on the seed locule. Briefly, surface-disinfected fruits were air-dried for 5 min and then peeled using a sterilized knife and cut transversally. Each half of the fruit was inoculated with 100 µl of conidial suspensions (∼1 × 104 conidia/ml) in potato dextrose broth (PDB) and incubated at 22 °C in a humid chamber for 7-10 days, or until symptoms with visible mycelial growth were observed. The control fruits were treated with 100 µl of sterilized PDB. Both A. arborescens isolates produced visible moldy core symptoms on the inoculated 'Sweet Tango' fruits, whereas no symptoms were observed on the control fruits (Figure S1). The experiment was repeated three times with at least three replicates with similar results. A. arborescens was successfully re-isolated from the artificially-inoculated fruits to complete Koch's postulates. To our knowledge, this is the first report of Alternaria arborescens causing moldy core disease in 'Sweet Tango' apples from New Zealand. Acknowledgments We thank Eric Bevis for his help in sample preparation for DNA sequencing, Willy Renderos for pathogenicity assay. We also thank Joan Hebb (Scotian Gold Cooperative Ltd.,) for providing the apple sample for this study. This research was made possible through financial support from Agriculture and Agri-Food Canada. The authors(s) declare no conflict of interest. Literature Cited Andrew M., Peever T.L., Pryor B.M. An expanded multilocus phylogeny does not resolve species among the small-spored Alternaria species complex. 2009. Mycologia. 101:95-109. Berbee, M. L. et al. 1999. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences Mycologia. 91:964. Gabriel, M.F. I. Postigo, A. Gutiérrez-Rodríguez, E. Suñén, C.T. Tomaz, J. Martínez 2015. Development of a PCR-based tool for detecting immunologically relevant Alt a 1 and Alt a 1 homologue coding sequences. Medical Mycology. 53 (6):636-642. Gao, L. L., Zhang, Q., Sun, X. Y., Jiang, L., Zhang, R., Sun, G. Y., Zha, Y. L., and Biggs, A. R. 2013. Etiology of moldy core, core browning, and core rot of Fuji apple in China. Plant Dis. 97:510-516. Kerry, O'Donnell, H.C. Kistler, E. Cigelnik, R.C. Ploetz. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. PNAS. 95: 2044-2049. McLeod, A. 2014. Moldy core and core rots. Pages 40-41 in: Compendium of Apple and Pear Diseases and Pests, 2nd ed. T. B. Sutton, H. S. Aldwinckle, A. M. Agnello, and J. F. Walgenbach, eds. American Phytopathological Society, St Paul, MN. Serdani, M., Kang, J. C., Peever, T. L., Andersen, B., and Crous, P. W. 2002. Characterization of Alternaria species groups associated with core rot of apples in South Africa. Mycol. Res. 106:561-569. Simmons, E. G. 2007. Alternaria: an identification manual. CBS Biodiversity Series. 6:780 pp. Spotts, R. A., Holmes, R. J., and Washington, W. S. 1988. Factors affecting wet core rot of apples. Australas. Plant Pathol. 17:53-57. White, T. J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315-322 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, eds. San Diego, CA: Academic Press. Woudenberg, J. H. C., et al. 2015. Alternaria section Alternaria: Species, formae speciales or pathotypes. Stud. Mycol. 82:1-21.
霉心病是苹果果实的一种真菌病害,其特征是在种子腔中出现菌丝生长,有时还伴有紧邻的周围果肉被侵染。在果实被切开之前,这种病害可能不会被发现,因为果实表面没有出现症状。链格孢属、曲霉属、枝孢属、盾壳霉属、附球菌属、茎点霉属和匍柄霉属是一些与霉心病相关的常见病原体(塞尔达尼等人,2002年;高等人,2013年;麦克劳德,2014年)。这种病害在萼片开张的苹果品种中更为常见,在生长季节或采后贮藏阶段,孢子可能引发感染(斯波茨等人,1988年)。2018年,一批从新西兰运往加拿大新斯科舍省斯科蒂安黄金合作社有限公司的“甜蜜探戈”苹果被发现感染了霉心病。当切开10个苹果时,观察到中度至重度的霉心病症状(图S1)。相比之下,在新斯科舍省种植的“甜蜜探戈”苹果,随机切开10个果实,未发现霉心病症状。从果心区域取小块患病果实组织,在1%次氯酸钠中进行1分钟的表面消毒,用无菌水冲洗三次,然后置于马铃薯葡萄糖琼脂(PDA)平板上。将PDA平板在22℃黑暗条件下培养,并进行单孢分离至新鲜的PDA平板上。这些分离物产生形状规则的菌落,棕黑色,边缘有明显的白灰色边,分生孢子为灰色(图S2 AB)。在PDA上生长3周后,菌落变为深黑色。菌丝有隔膜,分生孢子椭圆形、倒棍棒形或棍棒形,末端渐细,有4 - 6个纵向和横向隔膜(图S2 C - D)。在20日龄的PDA平板上,分生孢子大小范围为12.5 - 20×8.7 - 12.5微米。根据分生孢子的大小和形状以及其他形态特征,分离出的真菌与链格孢属物种相同(西蒙斯,2007年)。为了通过多位点序列分析评估分离出的病原体物种的身份,使用E.Z.N.A. SP真菌DNA试剂盒(欧米茄生物科技公司)从两个分离物(5.8和8)的纯培养物中提取基因组DNA。使用引物gpd1/2(伯比等人,1999年)、A21F/A21R(加布里埃尔,2015年)、OPA10 - 2/OPA10 - 2L(安德鲁等人,2009年)、ITS1/ITS4(怀特等人,1990年)和EF1 - up /EF1 - low(奥唐奈等人,1998年)分别扩增并测序两个链格孢属物种分离物(5.8和8)的甘油醛 - 3 - 磷酸脱氢酶(GAPDH)、主要过敏原(Alt a 1)、OPA10 - 2、核糖体DNA的内部转录间隔区(ITS)区域和翻译延伸因子1 - α(TEF1 - α)区域。两个分离物的所得序列保存在NCBI基因库中(GAPDH;MW411052,MW411053,Alt a 1;MW411050,MW411051,OPA10 - 2;MW415762,MW415763,ITS;MK140445,MT225559,TEF1 - α;MT305773和MT305774)。两个分离物的GAPDH、Alt a 1、OPA - 10 - 2、ITS和TEF1 - α基因序列彼此相同,与树状链格孢S.(AY278810.1,AY563303.1,KP124712.1,KY965831.1,KY965831.1)的同一性分别为100%、100%、99.21%和100%。与参考菌株CBS 102605的同一性证实,分离菌株5.8和8均为树状链格孢。通过将分生孢子悬浮液直接滴在种子腔上,对健康的“甜蜜探戈”果实进行人工接种,证实了两个树状链格孢分离物的致病性。简要地说,表面消毒后的果实风干5分钟,然后用无菌刀去皮并横向切开。将每个半果接种100微升马铃薯葡萄糖肉汤(PDB)中的分生孢子悬浮液(约1×104个分生孢子/毫升),并在22℃的潮湿培养箱中培养7 - 10天,或直到观察到有可见菌丝生长的症状。对照果实用1百升无菌PDB处理。两个树状链格孢分离物在接种的“甜蜜探戈”果实上均产生了可见霉心病症状,而对照果实未观察到症状(图S1)。该实验重复三次,每次至少三个重复,结果相似。从人工接种的果实中成功重新分离出树状链格孢,以完成科赫法则验证。据我们所知,这是关于树状链格孢引起来自新西兰的“甜蜜探戈”苹果霉心病病害的首次报道。致谢 我们感谢埃里克·贝维斯在DNA测序样本制备方面的帮助,威利·伦德罗斯在致病性测定方面的帮助。我们还感谢琼·赫布(斯科蒂安黄金合作社有限公司)为本研究提供苹果样本。本研究通过加拿大农业和农业食品部的财政支持得以开展。作者声明无利益冲突。参考文献 安德鲁·M.,皮弗·T.L.,普赖尔·B.M. 扩大多位点系统发育分析未解决小孢子链格孢物种复合体中的物种问题。2009年。《真菌学》。101:95 - 109。伯比,M.L.等人。真菌进化系统学和已知高毒力病原体的起源,从ITS和甘油醛 - 3 - 磷酸脱氢酶基因序列推断。1999年。《真菌学》。91:964。加布里埃尔,M.F.I. 波斯蒂戈,A. 古铁雷斯 - 罗德里格斯,E. 苏嫩,C.T. 托马兹,J. 马丁内斯。开发一种基于PCR的工具用于检测免疫相关的Alt a 1和Alt a 1同源编码序列。2015年。《医学真菌学》。53(6):636 - 642。高,L.L.,张,Q.,孙,X.Y.,江,L.,张,R.,孙,G.Y.,查,Y.L.,比格斯,A.R. 中国富士苹果霉心病、果心褐变和果心腐烂的病因。2013年。《植物病害》。97:510 - 516。克里,奥唐奈,H.C. 基斯勒,E. 西格尔尼克,R.C. 普洛茨。香蕉巴拿马病致病真菌的多个进化起源:来自核基因和线粒体基因谱系的一致证据。1998年。《美国国家科学院院刊》。95:2044 - 2049。麦克劳德,A. 霉心病和果心腐烂。载于:《苹果和梨病虫害简编》,第2版。T.B. 萨顿,H.S. 奥尔德温克尔,A.M. 阿涅洛,J.F. 瓦尔根巴赫编。美国植物病理学会,明尼苏达州圣保罗。塞尔达尼,M.,康,J.C.,皮弗,T.L.,安徒生,B.,克劳斯,P.W. 南非与苹果果心腐烂相关的链格孢属物种组特征。2002年。《真菌研究》。106:561 - 569。西蒙斯,E.G. 链格孢属:鉴定手册。CBS生物多样性系列。6:780页。斯波茨,R.A.,霍姆斯,R.J.,华盛顿,W.S. 影响苹果湿心腐病的因素。1988年。《澳大利亚植物病理学》。17:53 - 57。怀特,T.J.,布伦斯,T.,李,S.,泰勒,J. 用于系统发育分析的真菌核糖体RNA基因的扩增和直接测序。载于:《PCR协议:方法与应用指南》。M.A. 英尼斯,D.H. 格尔凡德,J.J. 斯尼西,T.J. 怀特编。加利福尼亚州圣地亚哥:学术出版社。2015年。《链格孢属链格孢亚属:物种、专化型或致病型》。《真菌研究》。82:1 - 21。