Suppr超能文献

多组学分析肾透明细胞癌肿瘤血管生成特征及潜在的表观遗传调控机制。

Multi-omics analysis of tumor angiogenesis characteristics and potential epigenetic regulation mechanisms in renal clear cell carcinoma.

机构信息

Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Road, Fuzhou, 200001, People's Republic of China.

Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China.

出版信息

Cell Commun Signal. 2021 Mar 24;19(1):39. doi: 10.1186/s12964-021-00728-9.

Abstract

BACKGROUND

Tumor angiogenesis, an essential process for cancer proliferation and metastasis, has a critical role in prognostic of kidney renal clear cell carcinoma (KIRC), as well as a target in guiding treatment with antiangiogenic agents. However, tumor angiogenesis subtypes and potential epigenetic regulation mechanisms in KIRC patient remains poorly characterized. System evaluation of angiogenesis subtypes in KIRC patient might help to reveal the mechanisms of KIRC and develop more target treatments for patients.

METHOD

Ten independent tumor angiogenesis signatures were obtained from molecular signatures database (MSigDB) and gene set variation analysis was performed to calculate the angiogenesis score in silico using the Cancer Genome Atlas (TCGA) KIRC dataset. Tumor angiogenesis subtypes in 539 TCGA-KIRC patients were identified using consensus clustering analysis. The potential regulation mechanisms was studied using gene mutation, copy number variation, and differential methylation analysis (DMA). The master transcription factors (MTF) that cause the difference in tumor angiogenesis signals were completed by transcription factor enrichment analysis.

RESULTS

The angiogenesis score of a prognosis related angiogenesis signature including 189 genes was significantly correlated with immune score, stroma score, hypoxia score, and vascular endothelial growth factor (VEGF) signal score in 539 TCGA KIRC patients. MMRN2, CLEC14A, ACVRL1, EFNB2, and TEK in candidate gene set showed highest correlation coefficient with angiogenesis score in TCGA-KIRC patients. In addition, all of them were associated with overall survival in both TCGA-KIRC and E-MTAB-1980 KIRC data. Clustering analysis based on 183 genes in angiogenesis signature identified two prognosis related angiogenesis subtypes in TCGA KIRC patients. Two clusters also showed different angiogenesis score, immune score, stroma score, hypoxia score, VEGF signal score, and microenvironment score. DMA identified 59,654 differential methylation sites between two clusters and part of these sites were correlated with tumor angiogenesis genes including CDH13, COL4A3, and RHOB. In addition, RFX2, SOX13, and THRA were identified as top three MTF in regulating angiogenesis signature in KIRC patients.

CONCLUSION

Our study indicate that evaluation the angiogenesis subtypes of KIRC based on angiogenesis signature with 183 genes and potential epigenetic mechanisms may help to develop more target treatments for KIRC patients. Video Abstract.

摘要

背景

肿瘤血管生成是癌症增殖和转移的必要过程,在肾透明细胞癌(KIRC)的预后中起着关键作用,也是指导抗血管生成药物治疗的靶点。然而,KIRC 患者的肿瘤血管生成亚型和潜在的表观遗传调控机制仍未得到充分描述。对 KIRC 患者血管生成亚型的系统评估可能有助于揭示 KIRC 的机制,并为患者开发更多的靶向治疗方法。

方法

从分子特征数据库(MSigDB)中获取 10 个独立的肿瘤血管生成特征,并使用癌症基因组图谱(TCGA)KIRC 数据集进行基因集变异分析(GSVA)计算血管生成评分。使用共识聚类分析对 539 例 TCGA-KIRC 患者进行肿瘤血管生成亚型鉴定。使用基因突变、拷贝数变异和差异甲基化分析(DMA)研究潜在的调控机制。通过转录因子富集分析确定导致肿瘤血管生成信号差异的主要转录因子(MTF)。

结果

包括 189 个基因的预后相关血管生成特征的血管生成评分与 539 例 TCGA-KIRC 患者的免疫评分、基质评分、缺氧评分和血管内皮生长因子(VEGF)信号评分显著相关。在 TCGA-KIRC 患者中,候选基因集中的 MMRN2、CLEC14A、ACVRL1、EFNB2 和 TEK 与血管生成评分的相关性最高。此外,它们在 TCGA-KIRC 和 E-MTAB-1980 KIRC 数据中均与总生存相关。基于血管生成特征中 183 个基因的聚类分析在 TCGA-KIRC 患者中确定了两种与预后相关的血管生成亚型。两个聚类也表现出不同的血管生成评分、免疫评分、基质评分、缺氧评分、VEGF 信号评分和微环境评分。DMA 在两个聚类之间鉴定了 59654 个差异甲基化位点,其中一些位点与肿瘤血管生成基因(包括 CDH13、COL4A3 和 RHOB)相关。此外,RFX2、SOX13 和 THRA 被鉴定为调节 KIRC 患者血管生成特征的前三个 MTF。

结论

我们的研究表明,基于包含 183 个基因的血管生成特征和潜在的表观遗传机制对 KIRC 患者的血管生成亚型进行评估,可能有助于为 KIRC 患者开发更多的靶向治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/900c/7992844/ac231d29d4b3/12964_2021_728_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验