Suppr超能文献

MAGI-1 PDZ2 结构域阻断通过增强顶端柯萨奇病毒和腺病毒受体的蛋白水解来防止腺病毒感染。

MAGI-1 PDZ2 Domain Blockade Averts Adenovirus Infection via Enhanced Proteolysis of the Apical Coxsackievirus and Adenovirus Receptor.

机构信息

Department of Biological Sciences, Wright State University, Dayton, Ohio, USA.

Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.

出版信息

J Virol. 2021 Jun 10;95(13):e0004621. doi: 10.1128/JVI.00046-21.

Abstract

Adenoviruses (AdVs) are etiological agents of gastrointestinal, heart, eye, and respiratory tract infections that can be lethal for immunosuppressed people. Many AdVs use the coxsackievirus and adenovirus receptor (CAR) as a primary receptor. The CAR isoform resulting from alternative splicing that includes the eighth exon, CAR, localizes to the apical surface of polarized epithelial cells and is responsible for the initiation of AdV infection. We have shown that the membrane level of CAR is tightly regulated by two MAGI-1 PDZ domains, PDZ2 and PDZ4, resulting in increased or decreased AdV transduction, respectively. We hypothesized that targeting the interactions between the MAGI-1 PDZ2 domain and CAR would decrease the apical CAR expression level and prevent AdV infection. Decoy peptides that target MAGI-1 PDZ2 were synthesized (TAT-E6 and TAT-NET1). PDZ2 binding peptides decreased CAR expression and reduced AdV transduction. CAR degradation was triggered by the activation of the regulated intramembrane proteolysis (RIP) pathway through a disintegrin and metalloproteinase (ADAM17) and γ-secretase. Further analysis revealed that ADAM17 interacts directly with the MAGI-1 PDZ3 domain, and blocking the PDZ2 domain enhanced the accessibility of ADAM17 to the substrate (CAR). Finally, we validated the efficacy of TAT-PDZ2 peptides in protecting the epithelia from AdV transduction using a novel transgenic animal model. Our data suggest that TAT-PDZ2 binding peptides are novel anti-AdV molecules that act by enhanced RIP of CAR and decreased AdV entry. This strategy has additional translational potential for targeting other viral receptors that have PDZ binding domains, such as the angiotensin-converting enzyme 2 receptor. Adenovirus is a common threat in immunosuppressed populations and military recruits. There are no currently approved treatments/prophylactic agents that protect from most AdV infections. Here, we developed peptide-based small molecules that can suppress AdV infection of polarized epithelia by targeting the AdV receptor, coxsackievirus and adenovirus receptor (CAR). The newly discovered peptides target a specific PDZ domain of the CAR-interacting protein MAGI-1 and decrease AdV transduction in multiple polarized epithelial models. Peptide-induced CAR degradation is triggered by extracellular domain (ECD) shedding through ADAM17 followed by γ-secretase-mediated nuclear translocation of the C-terminal domain. The enhanced shedding of the CAR ECD further protected the epithelium from AdV infection. Taken together, these novel molecules protect the epithelium from AdV infection. This approach may be applicable to the development of novel antiviral molecules against other viruses that use a receptor with a PDZ binding domain.

摘要

腺病毒(AdVs)是引起胃肠道、心脏、眼睛和呼吸道感染的病原体,可对免疫抑制人群致命。许多 AdVs 使用柯萨奇病毒和腺病毒受体(CAR)作为主要受体。通过包含第八外显子的选择性剪接产生的 CAR 异构体定位于极化上皮细胞的顶表面,负责启动 AdV 感染。我们已经表明,CAR 的膜水平受到两个 MAGI-1 PDZ 结构域(PDZ2 和 PDZ4)的严格调节,分别导致 AdV 转导的增加或减少。我们假设靶向 MAGI-1 PDZ2 域和 CAR 之间的相互作用会降低顶表面 CAR 的表达水平并防止 AdV 感染。合成了针对 MAGI-1 PDZ2 的诱饵肽(TAT-E6 和 TAT-NET1)。PDZ2 结合肽降低了 CAR 的表达并减少了 AdV 的转导。CAR 降解是通过整联蛋白金属蛋白酶 17(ADAM17)和 γ-分泌酶激活调节的跨膜蛋白水解(RIP)途径触发的。进一步的分析表明,ADAM17 与 MAGI-1 PDZ3 结构域直接相互作用,并且阻断 PDZ2 结构域增强了 ADAM17 对底物(CAR)的可及性。最后,我们使用新型转基因动物模型验证了 TAT-PDZ2 肽在保护上皮细胞免受 AdV 转导方面的功效。我们的数据表明,TAT-PDZ2 结合肽是新型抗 AdV 分子,通过增强 CAR 的 RIP 和减少 AdV 进入而起作用。这种策略对于靶向具有 PDZ 结合结构域的其他病毒受体(如血管紧张素转换酶 2 受体)具有额外的转化潜力。腺病毒在免疫抑制人群和新兵中是常见威胁。目前尚无批准的治疗/预防药物可预防大多数 AdV 感染。在这里,我们开发了基于肽的小分子,通过靶向腺病毒受体柯萨奇病毒和腺病毒受体(CAR),可以抑制极化上皮细胞的 AdV 感染。新发现的肽针对 CAR 相互作用蛋白 MAGI-1 的特定 PDZ 结构域,并在多种极化上皮模型中降低 AdV 转导。肽诱导的 CAR 降解是通过 ADAM17 介导的细胞外结构域(ECD)脱落触发的,随后是 γ-分泌酶介导的 C 末端结构域核易位。CAR ECD 的增强脱落进一步保护了上皮细胞免受 AdV 感染。总之,这些新型分子可保护上皮细胞免受 AdV 感染。这种方法可适用于开发针对使用 PDZ 结合结构域的其他病毒的新型抗病毒分子。

相似文献

2
The PDZ1 and PDZ3 domains of MAGI-1 regulate the eight-exon isoform of the coxsackievirus and adenovirus receptor.
J Virol. 2012 Sep;86(17):9244-54. doi: 10.1128/JVI.01138-12. Epub 2012 Jun 20.
4
The PDZ3 domain of the cellular scaffolding protein MAGI-1 interacts with the Coxsackievirus and adenovirus receptor (CAR).
Int J Biochem Cell Biol. 2015 Apr;61:29-34. doi: 10.1016/j.biocel.2015.01.012. Epub 2015 Jan 23.
5
Isoform specific editing of the coxsackievirus and adenovirus receptor.
Virology. 2019 Oct;536:20-26. doi: 10.1016/j.virol.2019.07.018. Epub 2019 Jul 27.
7
The Coxsackievirus and Adenovirus Receptor (CAR) undergoes ectodomain shedding and regulated intramembrane proteolysis (RIP).
PLoS One. 2013 Aug 28;8(8):e73296. doi: 10.1371/journal.pone.0073296. eCollection 2013.
8
The Coxsackievirus and Adenovirus Receptor Has a Short Half-Life in Epithelial Cells.
Pathogens. 2022 Jan 27;11(2):173. doi: 10.3390/pathogens11020173.
9
A role for the PDZ-binding domain of the coxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth.
J Cell Sci. 2004 Sep 1;117(Pt 19):4401-9. doi: 10.1242/jcs.01300. Epub 2004 Aug 10.
10
The Intracellular Domain of the Coxsackievirus and Adenovirus Receptor Differentially Influences Adenovirus Entry.
J Virol. 2015 Sep;89(18):9417-26. doi: 10.1128/JVI.01488-15. Epub 2015 Jul 1.

引用本文的文献

1
TRIM56 enhances adenoviral E1A steady state to improve oncolytic adenovirus therapy efficacy.
J Virol. 2025 Jul 22;99(7):e0004125. doi: 10.1128/jvi.00041-25. Epub 2025 Jun 3.
2
CXADR: From an Essential Structural Component to a Vital Signaling Mediator in Spermatogenesis.
Int J Mol Sci. 2023 Jan 9;24(2):1288. doi: 10.3390/ijms24021288.
3
The Coxsackievirus and Adenovirus Receptor Has a Short Half-Life in Epithelial Cells.
Pathogens. 2022 Jan 27;11(2):173. doi: 10.3390/pathogens11020173.
4
Human Coxsackie- and adenovirus receptor is a putative target of neutrophil elastase-mediated shedding.
Mol Biol Rep. 2022 Apr;49(4):3213-3223. doi: 10.1007/s11033-022-07153-2. Epub 2022 Feb 5.
5
A New Story of the Three Magi: Scaffolding Proteins and lncRNA Suppressors of Cancer.
Cancers (Basel). 2021 Aug 24;13(17):4264. doi: 10.3390/cancers13174264.

本文引用的文献

1
Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig.
Nat Commun. 2020 Apr 24;11(1):2070. doi: 10.1038/s41467-020-16048-4.
2
Isoform specific editing of the coxsackievirus and adenovirus receptor.
Virology. 2019 Oct;536:20-26. doi: 10.1016/j.virol.2019.07.018. Epub 2019 Jul 27.
4
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis.
J Mol Biol. 2018 Aug 17;430(17):2557-2589. doi: 10.1016/j.jmb.2018.06.027. Epub 2018 Jun 19.
6
Adenovirus transduction: More complicated than receptor expression.
Virology. 2017 Feb;502:144-151. doi: 10.1016/j.virol.2016.12.020. Epub 2016 Dec 31.
7
First-in-human application of the novel hepatitis B and hepatitis D virus entry inhibitor myrcludex B.
J Hepatol. 2016 Sep;65(3):483-9. doi: 10.1016/j.jhep.2016.04.013. Epub 2016 Apr 27.
8
Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: First results of a phase Ib/IIa study.
J Hepatol. 2016 Sep;65(3):490-8. doi: 10.1016/j.jhep.2016.04.016. Epub 2016 Apr 27.
9
Magi Is Associated with the Par Complex and Functions Antagonistically with Bazooka to Regulate the Apical Polarity Complex.
PLoS One. 2016 Apr 13;11(4):e0153259. doi: 10.1371/journal.pone.0153259. eCollection 2016.
10
Maraviroc: a review of its use in HIV infection and beyond.
Drug Des Devel Ther. 2015 Oct 1;9:5447-68. doi: 10.2147/DDDT.S90580. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验