Suppr超能文献

光子量子位的无损检测。

Nondestructive detection of photonic qubits.

机构信息

Max-Planck-Institut für Quantenoptik, Garching, Germany.

ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain.

出版信息

Nature. 2021 Mar;591(7851):570-574. doi: 10.1038/s41586-021-03290-z. Epub 2021 Mar 24.

Abstract

One of the biggest challenges in experimental quantum information is to sustain the fragile superposition state of a qubit. Long lifetimes can be achieved for material qubit carriers as memories, at least in principle, but not for propagating photons that are rapidly lost by absorption, diffraction or scattering. The loss problem can be mitigated with a nondestructive photonic qubit detector that heralds the photon without destroying the encoded qubit. Such a detector is envisioned to facilitate protocols in which distributed tasks depend on the successful dissemination of photonic qubits, improve loss-sensitive qubit measurements and enable certain quantum key distribution attacks. Here we demonstrate such a detector based on a single atom in two crossed fibre-based optical resonators, one for qubit-insensitive atom-photon coupling and the other for atomic-state detection. We achieve a nondestructive detection efficiency upon qubit survival of 79 ± 3 per cent and a photon survival probability of 31 ± 1 per cent, and we preserve the qubit information with a fidelity of 96.2 ± 0.3 per cent. To illustrate the potential of our detector, we show that it can, with the current parameters, improve the rate and fidelity of long-distance entanglement and quantum state distribution compared to previous methods, provide resource optimization via qubit amplification and enable detection-loophole-free Bell tests.

摘要

在实验量子信息学中,最大的挑战之一是维持量子位的脆弱叠加态。作为存储器,材料量子位载体的寿命可以很长,至少原则上是这样,但传播光子则不然,它们会因吸收、衍射或散射而迅速丢失。通过无损光子量子位探测器可以缓解这个损失问题,这种探测器在不破坏编码量子位的情况下对光子进行报喜。这种探测器有望促进分布式任务依赖于光子量子位成功传播的协议,改善对损耗敏感的量子位测量,并使某些量子密钥分发攻击成为可能。在这里,我们基于两个交叉光纤光学谐振器中的单个原子演示了这样的探测器,一个用于对量子位不敏感的原子-光子耦合,另一个用于原子态检测。我们实现了量子位存活时的无损检测效率为 79±3%,光子存活概率为 31±1%,并以 96.2±0.3%的保真度保留了量子位信息。为了说明我们的探测器的潜力,我们表明,根据当前参数,与以前的方法相比,它可以提高远距离纠缠和量子态分布的速率和保真度,通过量子位放大提供资源优化,并实现检测无漏洞贝尔测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/7990738/33f8650d6900/41586_2021_3290_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验