Seepma Sergěj Y M H, Ruiz-Hernandez Sergio E, Nehrke Gernot, Soetaert Karline, Philipse Albert P, Kuipers Bonny W M, Wolthers Mariette
Department of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands.
Alfred-Wegener Institut: Helmholtz-Zentrum für Polar- und Meeresforschung, am Handelshafen 12, 27570 Bremerhaven, Germany.
Cryst Growth Des. 2021 Mar 3;21(3):1576-1590. doi: 10.1021/acs.cgd.0c01403. Epub 2021 Jan 28.
The effect of stoichiometry on the new formation and subsequent growth of CaCO was investigated over a large range of solution stoichiometries (10 < < 10, where = {Ca}:{CO }) at various, initially constant degrees of supersaturation (30 < Ω < 200, where Ω = {Ca}{CO }/ ), pH of 10.5 ± 0.27, and ambient temperature and pressure. At = 1 and Ω < 150, dynamic light scattering (DLS) showed that ion adsorption onto nuclei (1-10 nm) was the dominant mechanism. At higher supersaturation levels, no continuum of particle sizes is observed with time, suggesting aggregation of prenucleation clusters into larger particles as the dominant growth mechanism. At ≠ 1 (Ω = 100), prenucleation particles remained smaller than 10 nm for up to 15 h. Cross-polarized light in optical light microscopy was used to measure the time needed for new particle formation and growth to at least 20 μm. This precipitation time depends strongly and asymmetrically on . Complementary molecular dynamics (MD) simulations confirm that affects CaCO nanoparticle formation substantially. At = 1 and Ω ≫ 1000, the largest nanoparticle in the system had a 21-68% larger gyration radius after 20 ns of simulation time than in nonstoichiometric systems. Our results imply that, besides Ω, stoichiometry affects particle size, persistence, growth time, and ripening time toward micrometer-sized crystals. Our results may help us to improve the understanding, prediction, and formation of CaCO in geological, industrial, and geo-engineering settings.
在各种初始恒定的过饱和度(30<Ω<200,其中Ω={Ca}{CO₃}/Kₚ)、pH为10.5±0.27以及环境温度和压力条件下,研究了化学计量比对CaCO₃新生成及其后续生长的影响,溶液化学计量比范围较大(10⁻⁴<r<10²,其中r={Ca²⁺}:{CO₃²⁻})。当r = 1且Ω<150时,动态光散射(DLS)表明离子吸附到核(1 - 10nm)上是主要机制。在较高过饱和度水平下,未观察到粒径随时间的连续变化,这表明预成核聚集体聚集成更大颗粒是主要生长机制。当r≠1(Ω = 100)时,预成核颗粒在长达15小时内保持小于10nm。利用光学显微镜中的交叉偏振光测量新颗粒形成并生长至至少20μm所需的时间。该沉淀时间强烈且不对称地依赖于r。互补的分子动力学(MD)模拟证实r对CaCO₃纳米颗粒形成有显著影响。当r = 1且Ω≫1000时,模拟20ns后系统中最大纳米颗粒的回转半径比非化学计量系统中的大出21 - 68%。我们的结果表明,除了Ω之外,化学计量比还会影响颗粒尺寸、持久性、生长时间以及向微米级晶体的熟化时间。我们的结果可能有助于我们增进对地质、工业和地质工程环境中CaCO₃形成的理解、预测和控制。