Peters Vincent F D, Koskamp Janou A, Di Tommaso Devis, Wolthers Mariette
Department of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands.
School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
Phys Chem Chem Phys. 2025 Feb 6;27(6):3115-3123. doi: 10.1039/d4cp03758h.
The significance of iron sulphide (FeS) formation extends to "origin of life" theories, industrial applications, and unwanted scale formation. However, the initial stages of FeS nucleation, particularly the impact of solution composition, remain unclear. Often, the iron and sulphide components' stoichiometry in solution differs from that in formed particles. This study uses methods to computationally examine aqueous FeS prenucleation clusters with excess Fe(II) or S(-II). The results suggest that clusters with additional S(-II) are more likely to form, implying faster nucleation of FeS particles in S(-II)-rich environments compared to Fe(II)-rich ones.
硫化铁(FeS)形成的意义延伸到“生命起源”理论、工业应用以及不需要的水垢形成。然而,FeS成核的初始阶段,特别是溶液成分的影响,仍不清楚。通常,溶液中铁和硫化物成分的化学计量与形成颗粒中的不同。本研究使用计算方法来研究含有过量Fe(II)或S(-II)的FeS预成核簇。结果表明,含有额外S(-II)的簇更有可能形成,这意味着与富含Fe(II)的环境相比,在富含S(-II)的环境中FeS颗粒的成核速度更快。