文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Effect of Micelle-Incorporated Cisplatin With Sizes Ranging From 8 to 40 nm for the Therapy of Lewis Lung Carcinoma.

作者信息

Wang Zhicheng, Li Yumin, Zhang Tong, Li Hongxia, Yang Zhao, Wang Cheng

机构信息

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.

Qingdao Institute for Food and Drug Control, Qingdao, China.

出版信息

Front Pharmacol. 2021 Mar 8;12:632877. doi: 10.3389/fphar.2021.632877. eCollection 2021.


DOI:10.3389/fphar.2021.632877
PMID:33762955
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7982401/
Abstract

Insufficient transport of therapeutic cargo into tumor bed is a bottleneck in cancer nanomedicine. Block copolymers are promising carriers with smaller particle size by ratio modification. Here, we constructed cisplatin nanoparticles with sizes ranging from 8 to 40 nm to study the permeability and therapy of Lewis lung carcinoma. We synthesized methoxypoly(ethylene glycol)-block poly(L-glutamic acid sodium salt) loading cisplatin through complexation reaction. The cisplatin nanomedicine has high drug loading and encapsulation efficiency. data demonstrated that cisplatin nanoparticles had equivalent growth-inhibiting effects on Lewis lung carcinoma cells compared to free cisplatin. evidences showed cisplatin nanoparticles had superior antitumor effects on the Lewis lung carcinoma mouse model with no obvious side effects. All results indicated that optimizing the ratio of block copolymers to obtain smaller sized nanomedicine could act as a promising strategy for overcoming the inadequate accumulation in poorly vascularized tumors.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/d4c8e71fa1c9/fphar-12-632877-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/d8138fb1a5e6/fphar-12-632877-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/d18292a737f8/fphar-12-632877-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/37107b167d0f/fphar-12-632877-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/bc5aadaaefba/fphar-12-632877-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/6f392f37f052/fphar-12-632877-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/5837b0f3dbf6/fphar-12-632877-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/5f357ba396e0/fphar-12-632877-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/ebf57436406d/fphar-12-632877-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/638c42898271/fphar-12-632877-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/d4c8e71fa1c9/fphar-12-632877-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/d8138fb1a5e6/fphar-12-632877-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/d18292a737f8/fphar-12-632877-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/37107b167d0f/fphar-12-632877-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/bc5aadaaefba/fphar-12-632877-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/6f392f37f052/fphar-12-632877-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/5837b0f3dbf6/fphar-12-632877-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/5f357ba396e0/fphar-12-632877-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/ebf57436406d/fphar-12-632877-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/638c42898271/fphar-12-632877-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/7982401/d4c8e71fa1c9/fphar-12-632877-g010.jpg

相似文献

[1]
Effect of Micelle-Incorporated Cisplatin With Sizes Ranging From 8 to 40 nm for the Therapy of Lewis Lung Carcinoma.

Front Pharmacol. 2021-3-8

[2]
Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for tumor therapy.

J Control Release. 2014-12-18

[3]
Synergistic Antitumor Efficacy Mediated by Liposomal Co-Delivery of Polymeric Micelles of Vinorelbine and Cisplatin in Non-Small Cell Lung Cancer.

Int J Nanomedicine. 2021

[4]
Combination Therapy of Lung Cancer Using Layer-by-Layer Cisplatin Prodrug and Curcumin Co-Encapsulated Nanomedicine.

Drug Des Devel Ther. 2020

[5]
Paclitaxel-incorporated nanoparticles using block copolymers composed of poly(ethylene glycol)/poly(3-hydroxyoctanoate).

Nanoscale Res Lett. 2014-9-24

[6]
Two-step fabricating micelle-like nanoparticles of cisplatin with the 'real' long circulation and high bioavailability for cancer therapy.

Colloids Surf B Biointerfaces. 2022-2

[7]
Cisplatin-loaded polymeric nanoparticles: characterization and potential exploitation for the treatment of non-small cell lung carcinoma.

Acta Biomater. 2015-5

[8]
Cisplatin nanoparticles possess stronger anti-tumor synergy with PD1/PD-L1 inhibitors than the parental drug.

Acta Biomater. 2021-11

[9]
Cisplatin Loaded Poly(L-glutamic acid)-g-Methoxy Poly(ethylene glycol) Complex Nanoparticles for Potential Cancer Therapy: Preparation, In Vitro and In Vivo Evaluation.

J Biomed Nanotechnol. 2016-1

[10]
A comparative study of linear, Y-shaped and linear-dendritic methoxy poly(ethylene glycol)-block-polyamidoamine-block-poly(l-glutamic acid) block copolymers for doxorubicin delivery in vitro and in vivo.

Acta Biomater. 2016-8

引用本文的文献

[1]
H-Dot Mediated Nanotherapeutics Mitigate Systemic Toxicity of Platinum-Based Anticancer Drugs.

Int J Mol Sci. 2023-10-23

本文引用的文献

[1]
A framework for designing delivery systems.

Nat Nanotechnol. 2020-10

[2]
Sulforaphane Mediates Glutathione Depletion via Polymeric Nanoparticles to Restore Cisplatin Chemosensitivity.

ACS Nano. 2019-11-4

[3]
Cisplatin: The first metal based anticancer drug.

Bioorg Chem. 2019-4-11

[4]
Preparation and Characterization of Magnetic and Porous Metal-Ceramic Nanocomposites from a Zeolite Precursor and Their Application for DNA Separation.

J Biomed Nanotechnol. 2017-3

[5]
Dynasore suppresses proliferation and induces apoptosis of the non-small-cell lung cancer cell line A549.

Biochem Biophys Res Commun. 2018-1-1

[6]
Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment.

Chem Soc Rev. 2017-6-21

[7]
Ferroptosis: A Novel Anti-tumor Action for Cisplatin.

Cancer Res Treat. 2017-5-10

[8]
Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment.

Theranostics. 2017-1-7

[9]
Nanomedicine as a potent strategy in melanoma tumor microenvironment.

Pharmacol Res. 2017-2-20

[10]
Hydrophilic poly (ethylene glycol) capped poly (lactic-co-glycolic) acid nanoparticles for subcutaneous delivery of insulin in diabetic rats.

Int J Biol Macromol. 2017-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索