Suppr超能文献

调节骨骼肌线粒体结构和自噬。

Regulates Skeletal Muscle Mitochondrial Structure and Autophagy.

作者信息

Liaghati Ava, Pileggi Chantal A, Parmar Gaganvir, Patten David A, Hadzimustafic Nina, Cuillerier Alexanne, Menzies Keir J, Burelle Yan, Harper Mary-Ellen

机构信息

Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.

Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.

出版信息

Front Physiol. 2021 Mar 5;12:604210. doi: 10.3389/fphys.2021.604210. eCollection 2021.

Abstract

Glutathione is an important antioxidant that regulates cellular redox status and is disordered in many disease states. Glutaredoxin 2 () is a glutathione-dependent oxidoreductase that plays a pivotal role in redox control by catalyzing reversible protein deglutathionylation. As oxidized glutathione (GSSG) can stimulate mitochondrial fusion, we hypothesized that may contribute to the maintenance of mitochondrial dynamics and ultrastructure. Here, we demonstrate that deletion results in decreased GSH:GSSG, with a marked increase of GSSG in primary muscle cells isolated from C57BL/6 mice. The altered glutathione redox was accompanied by increased mitochondrial length, consistent with a more fused mitochondrial reticulum. Electron microscopy of skeletal muscle fibers revealed decreased mitochondrial surface area, profoundly disordered ultrastructure, and the appearance of multi-lamellar structures. Immunoblot analysis revealed that autophagic flux was augmented in muscle as demonstrated by an increase in the ratio of LC3II/I expression. These molecular changes resulted in impaired complex I respiration and complex IV activity, a smaller diameter of muscle, and decreased body weight in deficient mice. Together, these are the first results to show that regulates skeletal muscle mitochondrial structure, and autophagy.

摘要

谷胱甘肽是一种重要的抗氧化剂,可调节细胞氧化还原状态,在许多疾病状态下会出现紊乱。谷氧还蛋白2()是一种依赖谷胱甘肽的氧化还原酶,通过催化可逆的蛋白质去谷胱甘肽化作用在氧化还原控制中起关键作用。由于氧化型谷胱甘肽(GSSG)可刺激线粒体融合,我们推测可能有助于维持线粒体动力学和超微结构。在此,我们证明缺失会导致GSH:GSSG降低,在从C57BL/6小鼠分离的原代肌肉细胞中GSSG显著增加。谷胱甘肽氧化还原的改变伴随着线粒体长度增加,这与线粒体网状结构融合程度更高一致。对骨骼肌纤维的电子显微镜检查显示线粒体表面积减少、超微结构严重紊乱以及出现多层结构。免疫印迹分析表明,如LC3II/I表达比率增加所示,自噬通量在肌肉中增强。这些分子变化导致复合体I呼吸和复合体IV活性受损、肌肉直径变小以及缺失小鼠体重减轻。总之,这些是首次表明调节骨骼肌线粒体结构和自噬的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3454/7982873/ca3321a3fdea/fphys-12-604210-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验