Suppr超能文献

基于电子病历数据的妊娠期糖尿病预测方法。

Prediction Method of Gestational Diabetes Based on Electronic Medical Record Data.

机构信息

Department of Endocrine, Affiliated Hospital of Beihua University, Jilin 132012, China.

Department of Anesthesiology, Affiliated Hospital of Beihua University, Jilin 132012, China.

出版信息

J Healthc Eng. 2021 Mar 8;2021:6672072. doi: 10.1155/2021/6672072. eCollection 2021.

Abstract

At present, the secondary application of electronic medical records is focused on auxiliary medical diagnosis to improve the accuracy of clinical diagnosis. The main research in this article is the prediction method of gestational diabetes based on electronic medical record data. In the original data, the ID number of the medical examiner did not match the medical examination record. In order to ensure the accuracy of the data, this part of the record was removed. First, the preparation stage before building the model is to determine the baseline accuracy of the original data, test the effectiveness of the machine learning algorithm, and then balance the target data set to solve the bias caused by the imbalance between data classes and the illusion of excessive model prediction results. Then, the disease prediction model is constructed by dividing the data set, selecting parameters and algorithms, and visualizing the model. Finally, the effect of predictive model construction is comprehensively judged based on multiple evaluation indicators and control experimental models. In this paper, the RF model can be used to rank the importance of the feature importance of the output feature on the importance of the classification result of the input feature. In order to test the accuracy of regression prediction, the experiment uses absolute mean error and root mean square error to evaluate the accuracy of fasting blood glucose prediction. A logistic regression model is constructed through the training set, and the test set data are brought into the prediction model for prediction. Experimental data show that when the features filtered by WBFS are used, the accuracy, 1 value, and AUC value of logistic regression are 0.809, 0.881, and 0.825, respectively, which is an increase of about 12% compared with when the feature is not used. The results show that the electronic medical record data drive can effectively improve the accuracy of predicting gestational diabetes.

摘要

目前,电子病历的二次应用主要集中在辅助医疗诊断上,以提高临床诊断的准确性。本文的主要研究内容是基于电子病历数据的妊娠期糖尿病预测方法。在原始数据中,体检者的身份证号与体检记录不匹配。为了保证数据的准确性,这部分记录被删除了。首先,在构建模型之前的准备阶段,要确定原始数据的基线准确性,测试机器学习算法的有效性,然后平衡目标数据集,以解决数据类之间的不平衡和模型预测结果的假象所带来的偏差。然后,通过划分数据集、选择参数和算法,并对模型进行可视化,构建疾病预测模型。最后,基于多个评价指标和控制实验模型,综合判断预测模型构建的效果。本文采用随机森林模型(RF)可以对输出特征对输入特征分类结果的重要性进行排序,从而对特征重要性进行排名。为了测试回归预测的准确性,实验采用绝对平均误差和均方根误差来评估空腹血糖预测的准确性。通过训练集构建逻辑回归模型,并将测试集数据带入预测模型进行预测。实验数据表明,当使用 WBFS 过滤后的特征时,逻辑回归的准确性、1 值和 AUC 值分别为 0.809、0.881 和 0.825,与不使用特征时相比,分别提高了约 12%。结果表明,电子病历数据驱动可以有效提高预测妊娠期糖尿病的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ae/7963898/65ed50bc9f2d/JHE2021-6672072.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验