Suppr超能文献

利用深度学习和贝叶斯优化以及传统机器学习技术预测妊娠糖尿病。

Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques.

机构信息

Faculty of Medicine, Department of Biostatistics and Medical Informatics, Karadeniz Technical University, Trabzon, Turkey.

Faculty of Medicine, Department of Gynecology and Obstetrics, Recep Tayyip Erdoğan University, Rize, Turkey.

出版信息

Med Biol Eng Comput. 2023 Jul;61(7):1649-1660. doi: 10.1007/s11517-023-02800-7. Epub 2023 Feb 27.

Abstract

The study aimed to develop a clinical diagnosis system to identify patients in the GD risk group and reduce unnecessary oral glucose tolerance test (OGTT) applications for pregnant women who are not in the GD risk group using deep learning algorithms. With this aim, a prospective study was designed and the data was taken from 489 patients between the years 2019 and 2021, and informed consent was obtained. The clinical decision support system for the diagnosis of GD was developed using the generated dataset with deep learning algorithms and Bayesian optimization. As a result, a novel successful decision support model was developed using RNN-LSTM with Bayesian optimization that gave 95% sensitivity and 99% specificity on the dataset for the diagnosis of patients in the GD risk group by obtaining 98% AUC (95% CI (0.95-1.00) and p < 0.001). Thus, with the clinical diagnosis system developed to assist physicians, it is planned to save both cost and time, and reduce possible adverse effects by preventing unnecessary OGTT for patients who are not in the GD risk group.

摘要

本研究旨在开发一种临床诊断系统,利用深度学习算法识别 GD 风险组患者,并减少非 GD 风险组孕妇不必要的口服葡萄糖耐量试验(OGTT)应用。为此,进行了一项前瞻性研究,数据取自 2019 年至 2021 年的 489 名患者,并获得了知情同意。使用生成的数据集和深度学习算法以及贝叶斯优化,开发了用于 GD 诊断的临床决策支持系统。结果,使用 RNN-LSTM 和贝叶斯优化开发了一种新的成功决策支持模型,该模型在数据集上的诊断 GD 风险组患者的灵敏度为 95%,特异性为 99%,AUC 为 98%(95%CI(0.95-1.00),p<0.001)。因此,通过为非 GD 风险组患者开发临床诊断系统,计划节省成本和时间,并通过预防不必要的 OGTT 减少可能的不良反应。

相似文献

6
Predicting Breast Cancer Based on Optimized Deep Learning Approach.基于优化深度学习方法预测乳腺癌。
Comput Intell Neurosci. 2022 Mar 19;2022:1820777. doi: 10.1155/2022/1820777. eCollection 2022.

引用本文的文献

4

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验