Suppr超能文献

利用近红外光谱法(NIRS)对棉花叶片进行快速且经济高效的营养成分分析。

Rapid and cost-effective nutrient content analysis of cotton leaves using near-infrared spectroscopy (NIRS).

作者信息

Prananto Jeremy Aditya, Minasny Budiman, Weaver Timothy

机构信息

School of Life and Environmental Sciences, The University of Sydney, Sydney Institute of Agriculture, Sydney, NSW, Australia.

CSIRO Agriculture and Food, Myall Vale, NSW, Australia.

出版信息

PeerJ. 2021 Mar 11;9:e11042. doi: 10.7717/peerj.11042. eCollection 2021.

Abstract

The development of portable near-infrared spectroscopy (NIRS) combined with smartphone cloud-based chemometrics has increased the power of these devices to provide real-time in-situ crop nutrient analysis. This capability provides the opportunity to address nutrient deficiencies early to optimise yield. The agriculture sector currently relies on results delivered via laboratory analysis. This involves the collection and preparation of leaf or soil samples during the growing season that are time-consuming and costly. This delays farmers from addressing deficiencies by several weeks which impacts yield potential; hence, requires a faster solution. This study evaluated the feasibility of using NIRS in estimating different macro- and micronutrients in cotton leaf tissues, assessing the accuracy of a portable handheld NIR spectrometer (wavelength range of 1,350-2,500 nm). This study first evaluated the ability of NIRS to predict leaf nutrient levels using dried and ground cotton leaf samples. The results showed the high accuracy of NIRS in predicting essential macronutrients (0.76 ≤ ≤ 0.98 for N, P, K, Ca, Mg and S) and most micronutrients (0.64 ≤ ≤ 0.81 for Fe, Mn, Cu, Mo, B, Cl and Na). The results showed that the handheld NIR spectrometer is a practical option to accurately measure leaf nutrient concentrations. This research then assessed the possibility of applying NIRS on fresh leaves for potential in-field applications. NIRS was more accurate in estimating cotton leaf nutrients when applied on dried and ground leaf samples. However, the application of NIRS on fresh leaves was still quite accurate. Using fresh leaves, the prediction accuracy was reduced by 19% for macronutrients and 11% for micronutrients, compared to dried and ground samples. This study provides further evidence on the efficacy of using NIRS for field estimations of cotton nutrients in combination with a nutrient decision support tool, with an accuracy of 87.3% for macronutrients and 86.6% for micronutrients. This application would allow farmers to manage nutrients proactively to avoid yield penalties or environmental impacts.

摘要

便携式近红外光谱技术(NIRS)与基于智能手机云的化学计量学相结合,提升了这些设备进行实时原位作物养分分析的能力。这种能力为早期解决养分不足以优化产量提供了机会。农业部门目前依赖实验室分析得出的结果。这涉及在生长季节采集和制备叶片或土壤样本,既耗时又昂贵。这使农民推迟数周解决养分不足问题,从而影响产量潜力;因此,需要更快的解决方案。本研究评估了使用近红外光谱技术估算棉叶组织中不同大量和微量养分的可行性,评估了一款便携式手持式近红外光谱仪(波长范围为1350 - 2500纳米)的准确性。本研究首先评估了近红外光谱技术使用干燥和研磨后的棉叶样本预测叶片养分水平的能力。结果表明,近红外光谱技术在预测必需大量养分(氮、磷、钾、钙、镁和硫的R²范围为0.76≤R²≤0.98)和大多数微量养分(铁、锰、铜、钼、硼、氯和钠的R²范围为0.64≤R²≤0.81)方面具有很高的准确性。结果表明,手持式近红外光谱仪是准确测量叶片养分浓度的实用选择。本研究随后评估了在新鲜叶片上应用近红外光谱技术以用于潜在田间应用的可能性。当应用于干燥和研磨后的叶片样本时,近红外光谱技术在估算棉叶养分方面更为准确。然而,在新鲜叶片上应用近红外光谱技术仍然相当准确。与干燥和研磨后的样本相比,使用新鲜叶片时,大量养分的预测准确率降低了19%,微量养分降低了11%。本研究进一步证明了结合养分决策支持工具使用近红外光谱技术进行田间棉养分估算的有效性,大量养分的准确率为87.3%,微量养分的准确率为86.6%。这种应用将使农民能够主动管理养分,避免产量损失或环境影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2414/7956002/b82cd9acafc7/peerj-09-11042-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验