CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, F-34398, France.
BMC Plant Biol. 2024 Nov 20;24(1):1100. doi: 10.1186/s12870-024-05776-0.
Near-infrared spectroscopy (NIRS) has become a popular tool for investigating phenotypic variability in plants. We developed the Shiny NIRSpredict application to get predictions of 81 Arabidopsis thaliana phenotypic traits, including classical functional traits as well as a large variety of commonly measured chemical compounds, based from near-infrared spectroscopy values based on deep learning. It is freely accessible at the following URL: https://shiny.cefe.cnrs.fr/NirsPredict/ . NIRSpredict has three main functionalities. First, it allows users to submit their spectrum values to get the predictions of plant traits from models built with the hosted A. thaliana database. Second, users have access to the database of traits used for model calibration. Data can be filtered and extracted on user's choice and visualized in a global context. Third, a user can submit his own dataset to extend the database and get part of the application development. NIRSpredict provides an easy-to-use and efficient method for trait prediction and an access to a large dataset of A. thaliana trait values. In addition to covering many of functional traits it also allows to predict a large variety of commonly measured chemical compounds. As a reliable way of characterizing plant populations across geographical ranges, NIRSpredict can facilitate the adoption of phenomics in functional and evolutionary ecology.
近红外光谱(NIRS)已成为研究植物表型变异性的一种流行工具。我们开发了 Shiny NIRSpredict 应用程序,基于深度学习,根据近红外光谱值,对 81 个拟南芥表型性状进行预测,包括经典功能性状以及大量常见测量的化学化合物。它可在以下网址免费获取:https://shiny.cefe.cnrs.fr/NirsPredict/ 。NIRSpredict 有三个主要功能。首先,它允许用户提交其光谱值,以从托管的拟南芥数据库中构建的模型获得植物性状的预测。其次,用户可以访问用于模型校准的性状数据库。可以根据用户的选择对数据进行过滤和提取,并以全局视角进行可视化。第三,用户可以提交自己的数据集来扩展数据库并获得部分应用程序开发。NIRSpredict 为性状预测提供了一种易于使用且高效的方法,并提供了大量拟南芥性状值的数据集。除了涵盖许多功能性状外,它还可以预测大量常见测量的化学化合物。作为一种在地理范围内描述植物种群的可靠方法,NIRSpredict 可以促进表型组学在功能和进化生态学中的应用。