Suppr超能文献

镰状细胞病研究中的微流控技术:现状与超越流动问题的展望

Microfluidics in Sickle Cell Disease Research: State of the Art and a Perspective Beyond the Flow Problem.

作者信息

Aich Anupam, Lamarre Yann, Sacomani Daniel Pereira, Kashima Simone, Covas Dimas Tadeu, de la Torre Lucimara Gaziola

机构信息

Intel Corporation, Hillsboro, OR, United States.

Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.

出版信息

Front Mol Biosci. 2021 Mar 8;7:558982. doi: 10.3389/fmolb.2020.558982. eCollection 2020.

Abstract

Sickle cell disease (SCD) is the monogenic hemoglobinopathy where mutated sickle hemoglobin molecules polymerize to form long fibers under deoxygenated state and deform red blood cells (RBCs) into predominantly sickle form. Sickled RBCs stick to the vascular bed and obstruct blood flow in extreme conditions, leading to acute painful vaso-occlusion crises (VOCs) - the leading cause of mortality in SCD. Being a blood disorder of deformed RBCs, SCD manifests a wide-range of organ-specific clinical complications of life (in addition to chronic pain) such as stroke, acute chest syndrome (ACS) and pulmonary hypertension in the lung, nephropathy, auto-splenectomy, and splenomegaly, hand-foot syndrome, leg ulcer, stress erythropoiesis, osteonecrosis and osteoporosis. The physiological inception for VOC was initially thought to be only a fluid flow problem in microvascular space originated from increased viscosity due to aggregates of sickled RBCs; however, over the last three decades, multiple molecular and cellular mechanisms have been identified that aid the VOC . Activation of adhesion molecules in vascular endothelium and on RBC membranes, activated neutrophils and platelets, increased viscosity of the blood, and fluid physics driving sickled and deformed RBCs to the vascular wall (known as margination of flow) - all of these come together to orchestrate VOC. Microfluidic technology in sickle research was primarily adopted to benefit from mimicking the microvascular network to observe RBC flow under low oxygen conditions as models of VOC. However, over the last decade, microfluidics has evolved as a valuable tool to extract biophysical characteristics of sickle red cells, measure deformability of sickle red cells under simulated oxygen gradient and shear, drug testing, models of intercellular interaction on endothelialized or adhesion molecule-functionalized channels to understand adhesion in sickle microenvironment, characterizing biomechanics and microrheology, biomarker identification, and last but not least, for developing point-of-care diagnostic technologies for low resource setting. Several of these platforms have already demonstrated true potential to be translated from bench to bedside. Emerging microfluidics-based technologies for studying heterotypic cell-cell interactions, organ-on-chip application and drug dosage screening can be employed to sickle research field due to their wide-ranging advantages.

摘要

镰状细胞病(SCD)是一种单基因血红蛋白病,其中突变的镰状血红蛋白分子在脱氧状态下聚合形成长纤维,并将红细胞(RBC)变形为主要的镰状形态。镰状红细胞粘附在血管床上,并在极端情况下阻塞血流,导致急性疼痛性血管阻塞危机(VOC)——这是SCD患者死亡的主要原因。作为一种红细胞变形的血液疾病,SCD表现出广泛的特定器官临床并发症(除慢性疼痛外),如中风、急性胸部综合征(ACS)和肺部肺动脉高压、肾病性、自体脾切除和脾肿大、手足综合征、腿部溃疡、应激性红细胞生成、骨坏死和骨质疏松症。VOC的生理起因最初被认为仅仅是微血管空间中的流体流动问题,这是由于镰状红细胞聚集导致粘度增加引起的;然而,在过去三十年中,已经确定了多种分子和细胞机制有助于VOC的发生。血管内皮和红细胞膜上粘附分子的激活、活化的中性粒细胞和血小板、血液粘度增加以及驱使镰状和变形红细胞流向血管壁的流体物理学(称为血流边缘化)——所有这些共同作用导致VOC的发生。镰状细胞研究中的微流控技术主要是为了通过模拟微血管网络来观察低氧条件下的红细胞流动,以此作为VOC的模型而受益。然而,在过去十年中,微流控技术已经发展成为一种有价值的工具,用于提取镰状红细胞的生物物理特征、测量模拟氧梯度和剪切力下镰状红细胞的变形能力、药物测试、在内皮化或粘附分子功能化通道上进行细胞间相互作用模型研究,以了解镰状微环境中的粘附情况、表征生物力学和微观流变学、生物标志物鉴定,以及最后但同样重要的是,用于开发针对资源匮乏地区的即时诊断技术。其中一些平台已经展示了从实验室到床边的真正潜力。基于微流控的新兴技术用于研究异型细胞间相互作用、芯片器官应用和药物剂量筛选,由于其广泛的优势,可应用于镰状细胞研究领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c20/7982466/1a4959989746/fmolb-07-558982-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验