IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2177-2187. doi: 10.1109/TCBB.2021.3068875. Epub 2022 Aug 8.
Alternative splicing enables a gene translating into different isoforms and into the corresponding proteoforms, which actually accomplish various biological functions of a living body. Isoform-isoform interactions (IIIs) provide a higher resolution interactome to explore the cellular processes and disease mechanisms than the canonically studied protein-protein interactions (PPIs), which are often recorded at the coarse gene level. The knowledge of IIIs is critical to map pathways, understand protein complexity and functional diversity, but the known IIIs are very scanty. In this paper, we propose a deep learning based method called DeepIII to systematically predict genome-wide IIIs by integrating diverse data sources, including RNA-seq datasets of different human tissues, exon array data, domain-domain interactions (DDIs) of proteins, nucleotide sequences and amino acid sequences. Particularly, DeepIII fuses these data to learn the representation of isoform pairs with a four-layer deep neural networks, and then performs binary classification on the learnt representation to achieve the prediction of IIIs. Experimental results show that DeepIII achieves a superior prediction performance to the state-of-the-art solutions and the III network constructed by DeepIII gives more accurate isoform function prediction. Case studies further confirm that DeepIII can differentiate the individual interaction partners of different isoforms spliced from the same gene. The code and datasets of DeepIII are available at http://mlda.swu.edu.cn/codes.php?name=DeepIII.
可变剪接使一个基因翻译成不同的异构体和相应的蛋白异构体,这些异构体实际上完成了生物体的各种生物学功能。异构体-异构体相互作用 (III) 提供了比经典研究的蛋白质-蛋白质相互作用 (PPI) 更高分辨率的互作组,PPI 通常记录在粗略的基因水平上。III 的知识对于绘制途径、理解蛋白质的复杂性和功能多样性至关重要,但已知的 III 非常有限。在本文中,我们提出了一种基于深度学习的方法,称为 DeepIII,通过整合多种数据源,包括不同人类组织的 RNA-seq 数据集、外显子数组数据、蛋白质的结构域-结构域相互作用 (DDI)、核苷酸序列和氨基酸序列,来系统地预测全基因组的 III。特别是,DeepIII 将这些数据融合到一个具有四层深度神经网络的异构体对表示中,然后对学习到的表示进行二进制分类,以实现 III 的预测。实验结果表明,DeepIII 达到了优于最先进解决方案的预测性能,并且由 DeepIII 构建的 III 网络给出了更准确的异构体功能预测。案例研究进一步证实,DeepIII 可以区分同一基因中不同异构体剪接的个体相互作用伙伴。DeepIII 的代码和数据集可在 http://mlda.swu.edu.cn/codes.php?name=DeepIII 上获得。