Laine Elodie, Freiberger Maria Inés
Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, 75005 Paris, France; Institut universitaire de France (IUF), France.
Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, 75005 Paris, France.
Curr Opin Struct Biol. 2025 Feb;90:102979. doi: 10.1016/j.sbi.2024.102979. Epub 2025 Jan 7.
The mRNA splicing machinery has been estimated to generate 100,000 known protein-coding transcripts for 20,000 human genes (Ensembl, Sept. 2024). However, this set is expanding with the massive and rapidly growing data coming from high-throughput technologies, particularly single-cell and long-read sequencing. Yet, the implications of splicing complexity at the protein level remain largely uncharted. In this review, we describe the current advances toward systematically assessing the contribution of alternative splicing to proteome function diversification. We discuss the potential and challenges of using artificial intelligence-based techniques in identifying alternative splicing proteoforms and characterising their structures, interactions, and functions.
据估计,mRNA剪接机制可为20000个人类基因产生100000种已知的蛋白质编码转录本(Ensembl,2024年9月)。然而,随着来自高通量技术,特别是单细胞和长读长测序的海量且快速增长的数据,这个集合正在不断扩大。然而,剪接复杂性在蛋白质水平上的影响在很大程度上仍未被探索。在这篇综述中,我们描述了系统评估可变剪接对蛋白质组功能多样化贡献的当前进展。我们讨论了使用基于人工智能的技术来识别可变剪接蛋白异构体并表征其结构、相互作用和功能的潜力与挑战。