Suppr超能文献

Temporal regulation of bovine coronavirus RNA synthesis.

作者信息

Keck J G, Hogue B G, Brian D A, Lai M M

机构信息

Department of Microbiology, University of Southern California, School of Medicine, Los Angeles 90024.

出版信息

Virus Res. 1988 Mar;9(4):343-56. doi: 10.1016/0168-1702(88)90093-7.

Abstract

The structure and synthesis of bovine coronavirus (BCV)-specific intracellular RNA were studied. A genome-size RNA and seven subgenomic RNAs with molecular weights of approximately 3.3 X 10(6), 3.1 X 10(6), 2.6 X 10(6), 1.1 X 10(6), 1.0 X 10(6), 0.8 X 10(6) and 0.6 X 10(6) were detected. Comparisons of BCV intracellular RNAs with those of mouse hepatitis virus (MHV) demonstrated the presence of an additional RNA for BCV, species 2a, of 3.1 X 10(6) daltons. BCV RNAs contain a nested-set structure similar to that of other coronaviruses. This nested-set structure would suggest that the new RNA has a capacity to encode a protein of approximately 430 amino acids. Kinetic studies demonstrated that the synthesis of subgenomic mRNAs and genomic RNA are differentially regulated. At 4 to 8 h post-infection (p.i.), subgenomic RNAs are synthesized at a maximal rate and represent greater than 90% of the total viral RNA synthesized, whereas genome-size RNA accounts for only 7%. Later in infection, at 70 to 72 h p.i., genome-size RNA is much more abundant and accounts for 88% of total RNA synthesized. Immunoprecipitations of [35S]methionine-pulse-labeled viral proteins demonstrated that viral protein synthesis occurs early in the infection, concurrent with the peak of viral subgenomic RNA synthesis. Western blot analysis suggests that these proteins are stable since the proteins are present at high level as late as 70 to 72 h p.i. The kinetics of production of virus particles coincides with the synthesis of genomic RNA. These studies thus indicate that there is a differential temporal regulation of the synthesis of genomic RNA and subgenomic mRNAs, and that the synthesis of genomic RNA is the rate-limiting step regulating the production of virus particles.

摘要

相似文献

1
Temporal regulation of bovine coronavirus RNA synthesis.
Virus Res. 1988 Mar;9(4):343-56. doi: 10.1016/0168-1702(88)90093-7.
4
Coronavirus multiplication strategy. I. Identification and characterization of virus-specified RNA.
J Virol. 1980 Jun;34(3):665-74. doi: 10.1128/JVI.34.3.665-674.1980.
6
Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons.
Proc Natl Acad Sci U S A. 1989 Jul;86(14):5626-30. doi: 10.1073/pnas.86.14.5626.
7
Importance of coronavirus negative-strand genomic RNA synthesis prior to subgenomic RNA transcription.
Virus Res. 1998 Sep;57(1):35-42. doi: 10.1016/s0168-1702(98)00090-2.
10
Identification of nucleocapsid binding sites within coronavirus-defective genomes.
Virology. 2000 Nov 25;277(2):235-49. doi: 10.1006/viro.2000.0611.

引用本文的文献

1
A 50-Year Overview of the Coronavirus Family with Science Mapping Techniques: A Review.
Iran J Public Health. 2021 Apr;50(4):649-664. doi: 10.18502/ijph.v50i4.5990.
3
The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus.
J Virol. 2001 Jan;75(1):506-12. doi: 10.1128/JVI.75.1.506-512.2001.
4
Coronavirus transcription early in infection.
J Virol. 1998 Nov;72(11):8517-24. doi: 10.1128/JVI.72.11.8517-8524.1998.
5
The molecular biology of coronaviruses.
Adv Virus Res. 1997;48:1-100. doi: 10.1016/S0065-3527(08)60286-9.
7
Bovine coronavirus.
Br Vet J. 1993 Jan-Feb;149(1):51-70. doi: 10.1016/S0007-1935(05)80210-6.
8
Antiviral action of interferon-alpha against porcine transmissible gastroenteritis virus.
Vet Microbiol. 1995 Jun;45(1):59-70. doi: 10.1016/0378-1135(94)00118-g.
9
Sequence analysis of the nucleocapsid protein gene of human coronavirus 229E.
Virology. 1989 Mar;169(1):142-51. doi: 10.1016/0042-6822(89)90050-0.
10
Inhibition of murine coronavirus RNA synthesis by hydroxyguanidine derivatives.
Virus Res. 1989 Sep;14(1):57-63. doi: 10.1016/0168-1702(89)90069-5.

本文引用的文献

1
Characterization and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus.
J Gen Virol. 1980 May;48(1):193-204. doi: 10.1099/0022-1317-48-1-193.
2
The virus-specific intracellular RNA species of two murine coronaviruses: MHV-a59 and MHV-JHM.
Virology. 1981 Oct 15;114(1):39-51. doi: 10.1016/0042-6822(81)90250-6.
3
Bovine coronavirus structural proteins.
J Virol. 1982 May;42(2):700-7. doi: 10.1128/JVI.42.2.700-707.1982.
4
Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus.
Proc Natl Acad Sci U S A. 1984 Jun;81(12):3626-30. doi: 10.1073/pnas.81.12.3626.
5
Defective interfering particles of mouse hepatitis virus.
Virology. 1984 Feb;133(1):9-17. doi: 10.1016/0042-6822(84)90420-3.
6
Further characterization of mouse hepatitis virus RNA-dependent RNA polymerases.
Virology. 1984 Feb;133(1):197-201. doi: 10.1016/0042-6822(84)90439-2.
7
Presence of leader sequences in the mRNA of mouse hepatitis virus.
J Virol. 1983 Jun;46(3):1027-33. doi: 10.1128/JVI.46.3.1027-1033.1983.
10
Characterization of two RNA polymerase activities induced by mouse hepatitis virus.
J Virol. 1982 Jun;42(3):847-53. doi: 10.1128/JVI.42.3.847-853.1982.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验