Alchera Inc., 225-15 Pangyoyeok-Ro, Bundang-gu Seongnam, Gyeonggi-do 13494, Republic of Korea.
ICVSLab., Department of Electronic Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
Neural Netw. 2021 Aug;140:148-157. doi: 10.1016/j.neunet.2021.03.007. Epub 2021 Mar 13.
Recent image style transfer methods use a pre-trained convolutional neural network as their feature encoder. However, the pre-trained network is not optimal for image style transfer but rather for image classification. Furthermore, they require time-consuming feature alignment to consider the existing correlation among channels of the encoded feature map. In this paper, we propose an end-to-end learning method that optimizes both encoder and decoder networks for style transfer task and relieves the computational complexity of the existing correlation-aware feature alignment. First, we performed end-to-end learning that updates not only decoder but also encoder parameters for the task of image style transfer in the network training phase. Second, in addition to the previous style and content losses, we use uncorrelation loss, i.e., the total correlation coefficient among responses of encoder channels. Our uncorrelation loss allows the encoder network to generate a feature map of channels without correlation. Subsequently, our method results in faster forward processing with only a light-weighted transformer of correlation-unaware feature alignment. Moreover, our method drastically reduced the channel redundancy of the encoded feature during the network training process. This provides us a possibility to perform channel elimination with negligible degradation in generated style quality. Our method is applicable to multiple scaled style transfer by using the cascade network scheme and allows a user to control style strength through the usage of a content-style trade-off parameter.
最近的图像风格迁移方法使用预先训练的卷积神经网络作为其特征编码器。然而,预训练网络并不是针对图像风格迁移而是针对图像分类进行优化的。此外,它们需要耗时的特征对齐来考虑编码特征图的通道之间现有的相关性。在本文中,我们提出了一种端到端学习方法,该方法针对风格迁移任务优化了编码器和解码器网络,并减轻了现有相关特征对齐的计算复杂度。首先,我们在网络训练阶段进行了端到端学习,不仅更新了解码器,还更新了编码器的参数,以完成图像风格迁移任务。其次,除了以前的风格和内容损失之外,我们还使用了不相关损失,即编码器通道响应之间的总相关系数。我们的不相关损失允许编码器网络生成没有相关性的通道特征图。随后,我们的方法通过使用轻量级的不相关特征对齐转换器,实现了更快的前向处理。此外,我们的方法在网络训练过程中大大减少了编码特征的通道冗余。这为我们提供了一种可能,通过使用通道消除来实现生成的风格质量几乎没有下降。我们的方法适用于使用级联网络方案的多尺度风格迁移,并允许用户通过使用内容-风格折衷参数来控制风格强度。