Intelligent Computer Vision Software Laboratory (ICVSLab), Department of Electronic Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea.
Sensors (Basel). 2022 Nov 2;22(21):8427. doi: 10.3390/s22218427.
Recent image-style transfer methods use the structure of a VGG feature network to encode and decode the feature map of the image. Since the network is designed for the general image-classification task, it has a number of channels and, accordingly, requires a huge amount of memory and high computational power, which is not mandatory for such a relatively simple task as image-style transfer. In this paper, we propose a new technique to size down the previously used style transfer network for eliminating the redundancy of the VGG feature network in memory consumption and computational cost. Our method automatically finds a number of consistently inactive convolution channels during the network training phase by using two new losses, i.e., and . The former maximizes the number of inactive channels and the latter fixes the positions of these inactive channels to be the same for the image. Our method improves the image generation speed to be up to 49% faster and reduces the number of parameters by 20% while maintaining style transferring performance. Additionally, our losses are also effective in pruning the VGG16 classifier network, i.e., parameter reduction by 26% and top-1 accuracy improvement by 0.16% on CIFAR-10.
最近的图像风格迁移方法使用 VGG 特征网络的结构对图像的特征图进行编码和解码。由于该网络是为一般的图像分类任务设计的,它具有大量的通道,因此需要大量的内存和高计算能力,而对于图像风格迁移这样相对简单的任务来说并不是必需的。在本文中,我们提出了一种新的技术,用于缩小之前使用的风格迁移网络,以消除 VGG 特征网络在内存消耗和计算成本方面的冗余。我们的方法通过使用两个新的损失函数 和 ,在网络训练阶段自动找到大量一致的不活跃卷积通道。前者最大化了不活跃通道的数量,后者将这些不活跃通道的位置固定为图像的相同位置。我们的方法将图像生成速度提高了 49%,同时将参数数量减少了 20%,而保持了风格迁移的性能。此外,我们的损失函数也可有效地修剪 VGG16 分类器网络,即在 CIFAR-10 数据集上减少 26%的参数和提高 0.16%的准确率。