Suppr超能文献

基于卷积神经网络的小儿脑积水脑积水分割及脑容量计算——从现有算法进行迁移学习。

Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.

机构信息

Department of Neurosurgery, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, 72076, Tubingen, Germany.

Division of Pediatric Neurosurgery, University Hospital Tübingen, Tubingen, Germany.

出版信息

Acta Neurochir (Wien). 2020 Oct;162(10):2463-2474. doi: 10.1007/s00701-020-04447-x. Epub 2020 Jun 25.

Abstract

BACKGROUND

For the segmentation of medical imaging data, a multitude of precise but very specific algorithms exist. In previous studies, we investigated the possibility of segmenting MRI data to determine cerebrospinal fluid and brain volume using a classical machine learning algorithm. It demonstrated good clinical usability and a very accurate correlation of the volumes to the single area determination in a reproducible axial layer. This study aims to investigate whether these established segmentation algorithms can be transferred to new, more generalizable deep learning algorithms employing an extended transfer learning procedure and whether medically meaningful segmentation is possible.

METHODS

Ninety-five routinely performed true FISP MRI sequences were retrospectively analyzed in 43 patients with pediatric hydrocephalus. Using a freely available and clinically established segmentation algorithm based on a hidden Markov random field model, four classes of segmentation (brain, cerebrospinal fluid (CSF), background, and tissue) were generated. Fifty-nine randomly selected data sets (10,432 slices) were used as a training data set. Images were augmented for contrast, brightness, and random left/right and X/Y translation. A convolutional neural network (CNN) for semantic image segmentation composed of an encoder and corresponding decoder subnetwork was set up. The network was pre-initialized with layers and weights from a pre-trained VGG 16 model. Following the network was trained with the labeled image data set. A validation data set of 18 scans (3289 slices) was used to monitor the performance as the deep CNN trained. The classification results were tested on 18 randomly allocated labeled data sets (3319 slices) and on a T2-weighted BrainWeb data set with known ground truth.

RESULTS

The segmentation of clinical test data provided reliable results (global accuracy 0.90, Dice coefficient 0.86), while the CNN segmentation of data from the BrainWeb data set showed comparable results (global accuracy 0.89, Dice coefficient 0.84). The segmentation of the BrainWeb data set with the classical FAST algorithm produced consistent findings (global accuracy 0.90, Dice coefficient 0.87). Likewise, the area development of brain and CSF in the long-term clinical course of three patients was presented.

CONCLUSION

Using the presented methods, we showed that conventional segmentation algorithms can be transferred to new advances in deep learning with comparable accuracy, generating a large number of training data sets with relatively little effort. A clinically meaningful segmentation possibility was demonstrated.

摘要

背景

对于医学成像数据的分割,存在许多精确但非常特定的算法。在之前的研究中,我们研究了使用经典机器学习算法分割 MRI 数据以确定脑脊髓液和脑容量的可能性。该算法证明了其具有良好的临床实用性,并且在可重复的轴向层中,体积与单个区域的确定之间具有非常高的相关性。本研究旨在调查这些既定的分割算法是否可以通过扩展的迁移学习过程转移到新的、更具通用性的深度学习算法,以及是否可以实现有医学意义的分割。

方法

对 43 例小儿脑积水患者的 95 例常规真 FISP MRI 序列进行回顾性分析。使用基于隐马尔可夫随机场模型的免费且临床可用的既定分割算法,生成四类分割(脑、脑脊髓液(CSF)、背景和组织)。选择 59 个随机数据(10432 个切片)作为训练数据集。对图像进行对比度、亮度以及左右和 X/Y 平移的随机增强。建立一个用于语义图像分割的卷积神经网络(CNN),包括编码器和对应的解码器子网络。该网络使用预训练的 VGG 16 模型的层和权重进行预初始化。使用标记的图像数据集对网络进行训练后,使用 18 个扫描(3289 个切片)的验证数据集来监测深度 CNN 训练时的性能。在 18 个随机分配的标记数据集(3319 个切片)和具有已知真实值的 T2 加权 BrainWeb 数据集上测试分类结果。

结果

临床测试数据的分割提供了可靠的结果(全局准确性 0.90,Dice 系数 0.86),而 CNN 对 BrainWeb 数据集的数据分割显示出类似的结果(全局准确性 0.89,Dice 系数 0.84)。使用传统 FAST 算法对 BrainWeb 数据集的分割产生了一致的结果(全局准确性 0.90,Dice 系数 0.87)。同样,还呈现了三位患者的长期临床病程中脑和 CSF 的面积发展情况。

结论

使用所提出的方法,我们表明传统的分割算法可以通过具有可比性的准确性转移到深度学习的新进展,并且只需相对较少的努力即可生成大量训练数据集。展示了具有临床意义的分割可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82fa/7496050/8de0aedaca5f/701_2020_4447_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验