Fraunhofer Institute for Microengineering and Microsystems, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany.
Department of Chemistry, Johannes Gutenberg-University Mainz, Saarstr. 21, 55122 Mainz, Germany.
Biointerphases. 2021 Mar 25;16(2):021004. doi: 10.1116/6.0000889.
The blood-brain barrier (BBB) maintains the homeostasis of the central nervous system, which is one of the reasons for the treatments of brain disorders being challenging in nature. Nanoparticles (NPs) have been seen as potential drug delivery systems to the brain overcoming the tight barrier of endothelial cells. Using a BBB model system based on human induced pluripotent stem cells (iPSCs), the impact of polymeric nanoparticles has been studied in relation to nanoparticle size, material, and protein corona. PLGA [poly(lactic-co-glycolic acid)] and PLLA [poly(d,l-lactide)] nanoparticles stabilized with Tween® 80 were synthesized (50 and 100 nm). iPSCs were differentiated into human brain microvascular endothelial cells (hBMECs), which express prominent BBB features, and a tight barrier was established with a high transendothelial electrical resistance of up to 4000 Ω cm. The selective adsorption of proteins on the PLGA and PLLA nanoparticles resulted in a high percentage of apolipoproteins and complement components. In contrast to the prominently used BBB models based on animal or human cell lines, the present study demonstrates that the iPSC-based model is suited to study interactions with nanoparticles in correlation with their material, size, and protein corona composition. Furthermore, asymmetrical flow field-flow fractionation enables the investigation of size and agglomeration state of NPs in biological relevant media. Even though a similar composition of the protein corona has been detected on NP surfaces by mass spectrometry, and even though similar amounts of NP are interacting with hBMECs, 100 nm-sized PLGA NPs do impact the barrier, forming endothelial cells in an undiscovered manner.
血脑屏障 (BBB) 维持着中枢神经系统的内环境稳定,这也是治疗脑部疾病具有挑战性的原因之一。纳米颗粒 (NPs) 已被视为克服内皮细胞紧密屏障的潜在脑内药物递送系统。本研究使用基于人诱导多能干细胞 (iPSCs) 的 BBB 模型系统,研究了聚合物纳米颗粒在纳米颗粒大小、材料和蛋白冠方面的影响。合成了聚乳酸-羟基乙酸共聚物 (PLGA) [聚 (乳酸-共-羟基乙酸)] 和聚 (D,L-丙交酯) (PLLA) [聚 (D,L-丙交酯)] 纳米颗粒,并使用 Tween® 80 进行稳定化(粒径为 50 和 100nm)。将 iPSCs 分化为表达明显 BBB 特征的人脑微血管内皮细胞 (hBMECs),并建立了具有高达 4000 Ω·cm 的高跨内皮电阻的紧密屏障。PLGA 和 PLLA 纳米颗粒对蛋白质的选择性吸附导致载脂蛋白和补体成分的百分比很高。与基于动物或人细胞系的突出的 BBB 模型相比,本研究表明,基于 iPSC 的模型适合于研究与纳米颗粒相互作用的相关特性,包括其材料、大小和蛋白冠组成。此外,不对称流场流分离技术能够研究 NP 在生物相关介质中的大小和聚集状态。尽管通过质谱检测到 NP 表面具有相似的蛋白冠组成,并且尽管相同数量的 NP 与 hBMECs 相互作用,但 100nm 大小的 PLGA NPs 确实会影响屏障,以一种未被发现的方式形成内皮细胞。