Suppr超能文献

比较人血清中 PLGA 和 PCL 纳米粒子的全冠指纹图谱和蛋白质吸附热力学。

Comparative whole corona fingerprinting and protein adsorption thermodynamics of PLGA and PCL nanoparticles in human serum.

机构信息

School of Pharmacy, University of the Western Cape, Cape Town, South Africa.

CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.

出版信息

Colloids Surf B Biointerfaces. 2020 Apr;188:110816. doi: 10.1016/j.colsurfb.2020.110816. Epub 2020 Jan 22.

Abstract

Nanoparticles (NPs) based on biocompatible and biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) represent effective systems for systemic drug delivery. Upon injection into the blood circuit, the NP surface is rapidly modified due to adsorption of proteins that form a 'protein corona' (PC). The PC plays an important role in cellular targeting, uptake and NP bio-distribution. Hence, the study of interactions between NPs and serum proteins appears as key for biomedical applications and safety of NPs. In the present work, we report on the comparative protein fluorescence quenching extent, thermodynamics of protein binding and identification of proteins in the soft and hard corona layers of PLGA and PCL NPs. NPs were prepared via a single emulsion-solvent evaporation technique and characterized with respect to size, zeta potential, surface morphology and hydrophobicity. Protein fluorescence quenching experiments were performed against human serum albumin. The thermodynamics of serum protein binding onto the NPs was studied using isothermal titration calorimetry. Semi-quantitative analysis of proteins in the PC layers was conducted using gel electrophoresis and mass spectrometry using human serum. Our results demonstrated the influence of particle hydrophobicity on the thermodynamics of protein binding. Human serum proteins bind to a greater extent and with greater affinity to PCL NPs than PLGA NPs. Several proteins were detected in the hard and soft corona of the NPs, representing their unique proteome fingerprints. Some proteins were unique to the PCL NPs. We anticipate that our findings will assist with rational design of polymeric NPs for effective drug delivery applications.

摘要

基于生物相容性和可生物降解聚合物的纳米粒子(NPs),如聚(乳酸-共-乙醇酸)(PLGA)和聚己内酯(PCL),代表了用于全身药物递送的有效系统。NP 表面在注射到血液回路后,由于吸附形成“蛋白质冠(PC)”的蛋白质,会迅速发生变化。PC 在细胞靶向、摄取和 NP 生物分布中起着重要作用。因此,研究 NP 与血清蛋白之间的相互作用对于 NP 的生物医学应用和安全性似乎是关键。在本工作中,我们报告了 PLGA 和 PCL NPs 的软和硬 corona 层中比较蛋白质荧光猝灭程度、蛋白质结合热力学和鉴定蛋白质。NP 是通过单乳液-溶剂蒸发技术制备的,并对其大小、ζ电位、表面形态和疏水性进行了表征。针对人血清白蛋白进行了蛋白质荧光猝灭实验。使用等温滴定量热法研究了血清蛋白结合到 NP 上的热力学。使用凝胶电泳和质谱用人血清对半定量分析了 PC 层中的蛋白质。我们的结果表明了颗粒疏水性对蛋白质结合热力学的影响。与 PLGA NPs 相比,人血清蛋白更强烈地结合到 PCL NPs 上,并且亲和力更高。在 NP 的硬 corona 和软 corona 中检测到了几种蛋白质,代表了它们独特的蛋白质组指纹。一些蛋白质是 PCL NPs 所特有的。我们预计我们的研究结果将有助于合理设计用于有效药物递送应用的聚合物 NPs。

相似文献

1
Comparative whole corona fingerprinting and protein adsorption thermodynamics of PLGA and PCL nanoparticles in human serum.
Colloids Surf B Biointerfaces. 2020 Apr;188:110816. doi: 10.1016/j.colsurfb.2020.110816. Epub 2020 Jan 22.
2
Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles.
Eur J Pharm Biopharm. 2019 Aug;141:70-80. doi: 10.1016/j.ejpb.2019.05.006. Epub 2019 May 10.
3
Influence of PEGylation on PLGA nanoparticle properties, hydrophobic drug release and interactions with human serum albumin.
J Pharm Pharmacol. 2019 Oct;71(10):1497-1507. doi: 10.1111/jphp.13147. Epub 2019 Aug 5.
4
Identification of main influencing factors on the protein corona composition of PLGA and PLA nanoparticles.
Eur J Pharm Biopharm. 2021 Jun;163:212-222. doi: 10.1016/j.ejpb.2021.04.006. Epub 2021 Apr 20.
5
A comprehensive investigation of the interactions of human serum albumin with polymeric and hybrid nanoparticles.
Drug Deliv Transl Res. 2024 Aug;14(8):2188-2202. doi: 10.1007/s13346-024-01578-x. Epub 2024 Apr 5.
6
Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles.
Drug Deliv. 2020 Dec;27(1):1134-1146. doi: 10.1080/10717544.2020.1797237.

引用本文的文献

3
PLGA-based herb Toosendanin delivery system for efficient therapy of oral squamous cell carcinoma.
BMC Complement Med Ther. 2025 Jul 2;25(1):217. doi: 10.1186/s12906-025-04957-0.
4
Anti- Activity of Cysteine-Modified Amidated Decoralin in the Presence of Engineered Nanomaterials.
Pharmaceutics. 2025 Apr 2;17(4):460. doi: 10.3390/pharmaceutics17040460.
8
Polymeric Nanoparticles and Nanogels: How Do They Interact with Proteins?
Gels. 2023 Aug 6;9(8):632. doi: 10.3390/gels9080632.

本文引用的文献

1
Characterizing the protein corona of sub-10 nm nanoparticles.
J Control Release. 2019 Jun 28;304:102-110. doi: 10.1016/j.jconrel.2019.04.023. Epub 2019 Apr 17.
2
Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy.
Adv Healthc Mater. 2019 Feb;8(4):e1801320. doi: 10.1002/adhm.201801320. Epub 2019 Jan 22.
3
Thermodynamic analysis of r-hGH-polymer surface Interaction using isothermal titration calorimetry.
Growth Horm IGF Res. 2018 Oct-Dec;42-43:86-93. doi: 10.1016/j.ghir.2018.10.002. Epub 2018 Oct 16.
4
Modeling of a single nanoparticle interaction with the human blood plasma proteins.
J Biol Phys. 2018 Dec;44(4):605-617. doi: 10.1007/s10867-018-9509-4. Epub 2018 Sep 12.
5
Formation of a protein corona influences the biological identity of nanomaterials.
Rep Pract Oncol Radiother. 2018 Jul-Aug;23(4):300-308. doi: 10.1016/j.rpor.2018.05.005. Epub 2018 May 28.
6
Serum protein electrophoresis in healthy and injured southern white rhinoceros (Ceratotherium simum simum).
PLoS One. 2018 Jul 25;13(7):e0200347. doi: 10.1371/journal.pone.0200347. eCollection 2018.
7
Beyond the protein corona - lipids matter for biological response of nanocarriers.
Acta Biomater. 2018 Apr 15;71:420-431. doi: 10.1016/j.actbio.2018.02.036. Epub 2018 Mar 7.
8
Formation of protein corona in vivo affects drug release from temperature-sensitive liposomes.
J Control Release. 2018 Apr 28;276:157-167. doi: 10.1016/j.jconrel.2018.02.038. Epub 2018 Mar 6.
9
Complexation With Human Serum Albumin Facilitates Sustained Release of Morin From Polylactic-Co-Glycolic Acid Nanoparticles.
J Phys Chem B. 2017 Mar 2;121(8):1758-1770. doi: 10.1021/acs.jpcb.6b08559. Epub 2017 Feb 21.
10
Understanding the Kinetics of Protein-Nanoparticle Corona Formation.
ACS Nano. 2016 Dec 27;10(12):10842-10850. doi: 10.1021/acsnano.6b04858. Epub 2016 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验