Suppr超能文献

诱发神经活动而非感知神经活动更能准确描述言语分类。

Speech categorization is better described by induced rather than evoked neural activity.

机构信息

Department of Electrical and Computer Engineering, University of Memphis, 3815 Central Avenue, Memphis, Tennessee 38152, USA.

School of Communication Sciences and Disorders, University of Memphis, 4055 North Park Loop, Memphis, Tennessee 38152, USA.

出版信息

J Acoust Soc Am. 2021 Mar;149(3):1644. doi: 10.1121/10.0003572.

Abstract

Categorical perception (CP) describes how the human brain categorizes speech despite inherent acoustic variability. We examined neural correlates of CP in both evoked and induced electroencephalogram (EEG) activity to evaluate which mode best describes the process of speech categorization. Listeners labeled sounds from a vowel gradient while we recorded their EEGs. Using a source reconstructed EEG, we used band-specific evoked and induced neural activity to build parameter optimized support vector machine models to assess how well listeners' speech categorization could be decoded via whole-brain and hemisphere-specific responses. We found whole-brain evoked β-band activity decoded prototypical from ambiguous speech sounds with ∼70% accuracy. However, induced γ-band oscillations showed better decoding of speech categories with ∼95% accuracy compared to evoked β-band activity (∼70% accuracy). Induced high frequency (γ-band) oscillations dominated CP decoding in the left hemisphere, whereas lower frequencies (θ-band) dominated the decoding in the right hemisphere. Moreover, feature selection identified 14 brain regions carrying induced activity and 22 regions of evoked activity that were most salient in describing category-level speech representations. Among the areas and neural regimes explored, induced γ-band modulations were most strongly associated with listeners' behavioral CP. The data suggest that the category-level organization of speech is dominated by relatively high frequency induced brain rhythms.

摘要

范畴感知(CP)描述了人类大脑如何在存在固有声学可变性的情况下对言语进行分类。我们在诱发和诱导脑电图(EEG)活动中检查了 CP 的神经相关性,以评估哪种模式最能描述言语分类的过程。当听众标记元音梯度中的声音时,我们记录了他们的 EEG。使用源重建 EEG,我们使用特定频带的诱发和诱导神经活动来构建参数优化的支持向量机模型,以评估通过全脑和半球特定反应对听众言语分类的解码程度。我们发现,全脑诱发β频带活动可以以约 70%的准确率解码出从模棱两可的语音中得出的典型语音。然而,与诱发β频带活动(约 70%的准确率)相比,诱导γ频带振荡表现出更好的语音类别解码,准确率约为 95%。与右半球相比,左半球的 CP 解码主要由诱导的高频(γ 频带)振荡主导,而较低的频率(θ 频带)则主导右半球的解码。此外,特征选择确定了携带诱导活动的 14 个脑区和在描述类别水平言语表示方面最突出的 22 个诱发活动脑区。在所探索的区域和神经模式中,诱导γ频带调制与听众的行为 CP 相关性最强。数据表明,言语的类别水平组织主要由相对较高的频率诱导脑节律主导。

相似文献

本文引用的文献

2
Effects of Noise on the Behavioral and Neural Categorization of Speech.噪声对言语行为和神经分类的影响。
Front Neurosci. 2020 Feb 27;14:153. doi: 10.3389/fnins.2020.00153. eCollection 2020.
8
An oscillator model better predicts cortical entrainment to music.振荡器模型能更好地预测皮层对音乐的同步。
Proc Natl Acad Sci U S A. 2019 May 14;116(20):10113-10121. doi: 10.1073/pnas.1816414116. Epub 2019 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验