Suppr超能文献

C 配位 O-羧甲基壳聚糖铜(II)复合物通过破坏辣椒疫霉菌细胞膜完整性发挥抗真菌活性。

C-coordinated O-carboxymethyl chitosan Cu(II) complex exerts antifungal activity by disrupting the cell membrane integrity of Phytophthora capsici Leonian.

机构信息

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Carbohydr Polym. 2021 Jun 1;261:117821. doi: 10.1016/j.carbpol.2021.117821. Epub 2021 Feb 15.

Abstract

Damage to the cell membrane is an effective method to prevent drug resistance in plant fungal diseases. Here, we proposed a negative remodeling model of the cell membrane structure induced by the C-coordinated O-carboxymethyl chitosan Cu (II) complex (O-CSLn-Cu). FITC-labeled O-CSLn-Cu (FITC-O-CSLn-Cu) was first synthesized via a nucleophilic substitution reaction and confirmed by FT-IR. FITC-labeled O-CSLn-Cu could pass through the fungal cell membrane, as detected by confocal laser scanning microscopy (CLSM) coupled with fluorescein isothiocyanate (FITC)-fluorescence. O-CSLn-Cu treatment led to apparent morphological changes in the membranes of P. capsici Leonian and giant unilamellar vesicles (GUVs) by transmission electron microscopy (TEM). Then, we performed component analysis of the cell membrane from the P. capsici Leonian affected by O-CSLn-Cu with a particular interest in membrane physicochemical properties. Many unsaturated fatty acids (UFAs) and key enzymes promoting UFA synthesis of the cell membrane were downregulated. Similarly, a large number of membrane proteins responsible for substance transport and biochemical reactions were downregulated. Furthermore, O-CSLn-Cu treatments increased plasma membrane permeability with significant leakage of intercellular electrolytes, soluble proteins and sugars, and lipid peroxidation with decreasing membrane fluidity. Finally, aquaporin 10 was proven to be a potential molecular target sensitive to antimicrobial agents according to composition analysis of membrane structure and immunohistochemistry.

摘要

细胞膜损伤是防止植物真菌病害产生抗药性的有效方法。在这里,我们提出了一种由 C 配位 O-羧甲基壳聚糖铜(II)配合物(O-CSLn-Cu)诱导的细胞膜结构负重塑模型。通过亲核取代反应首次合成了 FITC 标记的 O-CSLn-Cu(FITC-O-CSLn-Cu),并通过傅里叶变换红外光谱(FT-IR)进行了确认。通过共焦激光扫描显微镜(CLSM)结合异硫氰酸荧光素(FITC)-荧光检测到 FITC 标记的 O-CSLn-Cu 可以穿过真菌细胞膜。O-CSLn-Cu 处理导致辣椒疫霉菌和巨大单层囊泡(GUV)的膜明显形态变化,通过透射电子显微镜(TEM)观察到。然后,我们对受 O-CSLn-Cu 影响的辣椒疫霉菌细胞膜进行了成分分析,特别关注膜的物理化学性质。许多不饱和脂肪酸(UFAs)和促进细胞膜 UFA 合成的关键酶被下调。同样,大量负责物质运输和生化反应的膜蛋白也被下调。此外,O-CSLn-Cu 处理增加了质膜通透性,导致细胞间电解质、可溶性蛋白质和糖的显著泄漏,以及膜流动性降低的脂质过氧化。最后,根据膜结构组成分析和免疫组织化学,水通道蛋白 10 被证明是对抗菌剂敏感的潜在分子靶标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验