Suppr超能文献

人工蛋白质中埋置带电网络的设计。

Design of buried charged networks in artificial proteins.

机构信息

Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.

Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden.

出版信息

Nat Commun. 2021 Mar 25;12(1):1895. doi: 10.1038/s41467-021-21909-7.

Abstract

Soluble proteins are universally packed with a hydrophobic core and a polar surface that drive the protein folding process. Yet charged networks within the central protein core are often indispensable for the biological function. Here, we show that natural buried ion-pairs are stabilised by amphiphilic residues that electrostatically shield the charged motif from its surroundings to gain structural stability. To explore this effect, we build artificial proteins with buried ion-pairs by combining directed computational design and biophysical experiments. Our findings illustrate how perturbation in charged networks can introduce structural rearrangements to compensate for desolvation effects. We validate the physical principles by resolving high-resolution atomic structures of the artificial proteins that are resistant towards unfolding at extreme temperatures and harsh chemical conditions. Our findings provide a molecular understanding of functional charged networks and how point mutations may alter the protein's conformational landscape.

摘要

可溶性蛋白质普遍被一个疏水性核心和一个极性表面所包裹,这两个部分共同驱动蛋白质折叠过程。然而,蛋白质核心内部的带电网络对于生物功能通常是不可或缺的。在这里,我们表明,天然埋藏的离子对是由两亲性残基稳定的,这些残基通过静电作用将带电模体与其周围环境隔离,从而获得结构稳定性。为了探索这种效应,我们通过结合定向计算设计和生物物理实验,构建了具有埋藏离子对的人工蛋白质。我们的研究结果说明了带电网络的干扰如何引入结构重排以补偿去溶剂化效应。我们通过解析在极端温度和恶劣化学条件下仍能保持稳定的人工蛋白质的高分辨率原子结构,验证了这些物理原理。我们的研究结果提供了对功能带电网络的分子理解,以及点突变如何改变蛋白质的构象景观。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fec/7994573/f36d36d520e9/41467_2021_21909_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验