Suppr超能文献

一类用于复发间隔时间的加性变换模型。

A Class of Additive Transformation Models for Recurrent Gap Times.

作者信息

Chen Ling, Feng Yanqin, Sun Jianguo

机构信息

Division of Biostatistics, Washington University School of Medicine, Campus Box 8067, 660 S. Euclid Ave, St. Louis, MO 63110, U.S.A.

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China.

出版信息

Commun Stat Theory Methods. 2020;49(16):4030-4045. doi: 10.1080/03610926.2019.1594299. Epub 2019 Apr 3.

Abstract

The gap time between recurrent events is often of primary interest in many fields such as medical studies (Cook and Lawless 2007; Kang, Sun, and Zhao 2015; Schaubel and Cai 2004), and in this paper, we discuss regression analysis of the gap times arising from a general class of additive transformation models. For the problem, we propose two estimation procedures, the modified within-cluster resampling (MWCR) method and the weighted risk-set (WRS) method, and the proposed estimators are shown to be consistent and asymptotically follow the normal distribution. In particular, the estimators have closed forms and can be easily determined, and the methods have the advantage of leaving the correlation among gap times arbitrary. A simulation study is conducted for assessing the finite sample performance of the presented methods and suggests that they work well in practical situations. Also the methods are applied to a set of real data from a chronic granulomatous disease (CGD) clinical trial.

摘要

复发事件之间的间隔时间在许多领域通常是主要关注的内容,比如医学研究(库克和劳利斯,2007;康、孙和赵,2015;绍贝尔和蔡,2004)。在本文中,我们讨论了一类一般的加法变换模型产生的间隔时间的回归分析。针对这个问题,我们提出了两种估计方法,即修正的聚类内重抽样(MWCR)方法和加权风险集(WRS)方法,并且所提出的估计量被证明是一致的,且渐近服从正态分布。特别地,这些估计量具有封闭形式并且能够容易地确定,而且这些方法具有使间隔时间之间的相关性任意的优点。进行了一项模拟研究来评估所提出方法的有限样本性能,结果表明它们在实际情况中效果良好。此外,这些方法还被应用于一组来自慢性肉芽肿病(CGD)临床试验的真实数据。

相似文献

1
A Class of Additive Transformation Models for Recurrent Gap Times.一类用于复发间隔时间的加性变换模型。
Commun Stat Theory Methods. 2020;49(16):4030-4045. doi: 10.1080/03610926.2019.1594299. Epub 2019 Apr 3.
3
Additive mixed effect model for recurrent gap time data.用于复发间隔时间数据的加法混合效应模型。
Lifetime Data Anal. 2017 Apr;23(2):223-253. doi: 10.1007/s10985-015-9341-0. Epub 2015 Aug 22.
8
Additive transformation models for clustered failure time data.用于聚类失效时间数据的加法变换模型。
Lifetime Data Anal. 2010 Jul;16(3):333-52. doi: 10.1007/s10985-009-9145-1. Epub 2009 Dec 11.
10
The semiparametric accelerated trend-renewal process for recurrent event data.用于复发事件数据的半参数加速趋势更新过程。
Lifetime Data Anal. 2021 Jul;27(3):357-387. doi: 10.1007/s10985-021-09519-3. Epub 2021 Mar 25.

本文引用的文献

1
Additive mixed effect model for recurrent gap time data.用于复发间隔时间数据的加法混合效应模型。
Lifetime Data Anal. 2017 Apr;23(2):223-253. doi: 10.1007/s10985-015-9341-0. Epub 2015 Aug 22.
2
Nonparametric Estimation of a Recurrent Survival Function.复发生存函数的非参数估计
J Am Stat Assoc. 1999 Mar 1;94(445):146-153. doi: 10.1080/01621459.1999.10473831.
5
Additive transformation models for clustered failure time data.用于聚类失效时间数据的加法变换模型。
Lifetime Data Anal. 2010 Jul;16(3):333-52. doi: 10.1007/s10985-009-9145-1. Epub 2009 Dec 11.
8
Marginal regression of gaps between recurrent events.复发事件间隔的边际回归
Lifetime Data Anal. 2003 Sep;9(3):293-303. doi: 10.1023/a:1025892922453.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验