Suppr超能文献

用于复发事件数据的半参数加速趋势更新过程。

The semiparametric accelerated trend-renewal process for recurrent event data.

作者信息

Su Chien-Lin, Steele Russell J, Shrier Ian

机构信息

Department of Mathematics and Statistics, McGill University, Montréal, QC, Canada.

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada.

出版信息

Lifetime Data Anal. 2021 Jul;27(3):357-387. doi: 10.1007/s10985-021-09519-3. Epub 2021 Mar 25.

Abstract

Recurrent event data arise in many biomedical longitudinal studies when health-related events can occur repeatedly for each subject during the follow-up time. In this article, we examine the gap times between recurrent events. We propose a new semiparametric accelerated gap time model based on the trend-renewal process which contains trend and renewal components that allow for the intensity function to vary between successive events. We use the Buckley-James imputation approach to deal with censored transformed gap times. The proposed estimators are shown to be consistent and asymptotically normal. Model diagnostic plots of residuals and a method for predicting number of recurrent events given specified covariates and follow-up time are also presented. Simulation studies are conducted to assess finite sample performance of the proposed method. The proposed technique is demonstrated through an application to two real data sets.

摘要

在许多生物医学纵向研究中,当与健康相关的事件在随访期间每个受试者都可能反复发生时,就会出现复发事件数据。在本文中,我们研究了复发事件之间的间隔时间。我们基于趋势更新过程提出了一种新的半参数加速间隔时间模型,该模型包含趋势和更新成分,允许强度函数在连续事件之间变化。我们使用Buckley-James插补方法来处理截尾变换后的间隔时间。所提出的估计量被证明是一致的且渐近正态的。还给出了残差的模型诊断图以及在给定特定协变量和随访时间的情况下预测复发事件数量的方法。进行了模拟研究以评估所提方法的有限样本性能。通过应用于两个真实数据集展示了所提技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验