Suppr超能文献

基于线性变换模型的多元事件时间的边际回归

Marginal regression of multivariate event times based on linear transformation models.

作者信息

Lu Wenbin

机构信息

Department of Statistics, North Carolina State University, Raleigh, 27695, USA.

出版信息

Lifetime Data Anal. 2005 Sep;11(3):389-404. doi: 10.1007/s10985-005-2969-4.

Abstract

Multivariate event time data are common in medical studies and have received much attention recently. In such data, each study subject may potentially experience several types of events or recurrences of the same type of event, or event times may be clustered. Marginal distributions are specified for the multivariate event times in multiple events and clustered events data, and for the gap times in recurrent events data, using the semiparametric linear transformation models while leaving the dependence structures for related events unspecified. We propose several estimating equations for simultaneous estimation of the regression parameters and the transformation function. It is shown that the resulting regression estimators are asymptotically normal, with variance-covariance matrix that has a closed form and can be consistently estimated by the usual plug-in method. Simulation studies show that the proposed approach is appropriate for practical use. An application to the well-known bladder cancer tumor recurrences data is also given to illustrate the methodology.

摘要

多变量事件时间数据在医学研究中很常见,并且最近受到了很多关注。在这类数据中,每个研究对象可能会经历几种类型的事件或同一类型事件的复发,或者事件时间可能会聚类。对于多事件和聚类事件数据中的多变量事件时间,以及复发事件数据中的间隔时间,使用半参数线性变换模型来指定边际分布,同时不指定相关事件的依赖结构。我们提出了几个估计方程,用于同时估计回归参数和变换函数。结果表明,所得的回归估计量渐近正态,其方差协方差矩阵具有封闭形式,并且可以通过常用的代入法一致估计。模拟研究表明,所提出的方法适用于实际应用。还给出了一个应用于著名的膀胱癌肿瘤复发数据的例子来说明该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验