文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米抗体的免疫原性风险概况。

Immunogenicity Risk Profile of Nanobodies.

机构信息

Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium.

In vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium.

出版信息

Front Immunol. 2021 Mar 9;12:632687. doi: 10.3389/fimmu.2021.632687. eCollection 2021.


DOI:10.3389/fimmu.2021.632687
PMID:33767701
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7985456/
Abstract

UNLABELLED: Nanobodies (Nbs), the variable domains of camelid heavy chain-only antibodies, are a promising class of therapeutics or imaging reagents entering the clinic. They possess unique characteristics, including a minimal size, providing fast pharmacokinetics, high-target specificity, and an affinity in the (sub-)nanomolar range in conjunction with an easy selection and production, which allow them to outperform conventional antibodies for imaging and radiotherapeutic purposes. As for all protein theranostics, extended safety assessment and investigation of their possible immunogenicity in particular are required. In this study, we assessed the immunogenicity risk profile of two Nbs that are in phase II clinical trials: a first Nb against Human Epidermal growth factor Receptor 2 (HER2) for PET imaging of breast cancer and a second Nb with specificity to the Macrophage Mannose Receptor (MMR) for PET imaging of tumor-associated macrophages. For the anti-HER2 Nb, we show that only one out of 20 patients had a low amount of pre-existing anti-drug antibodies (ADAs), which only marginally increased 3 months after administering the Nb, and without negative effects of safety and pharmacokinetics. Further immunogenicity assessment assays showed that both non-humanized Nbs were taken up by human dendritic cells but exhibited no or only a marginal capacity to activate dendritic cells or to induce T cell proliferation. From our data, we conclude that monomeric Nbs present a low immunogenicity risk profile, which is encouraging for their future development toward potential clinical applications. ONE SENTENCE SUMMARY: Nanobodies, the recombinant single domain affinity reagents derived from heavy chain-only antibodies in camelids, are proven to possess a low immunogenicity risk profile, which will facilitate a growing number of Nanobodies to enter the clinic for therapeutic or diagnostic applications.

摘要

未加标签:纳米抗体(Nbs),来源于骆驼重链抗体的单域重组亲和力试剂,是一类很有前途的治疗或成像试剂,正在进入临床应用。它们具有独特的特性,包括体积小,提供快速的药代动力学特性,高靶特异性,以及在纳摩尔范围内的亲和力,并具有易于选择和生产的特点,这使得它们在成像和放射治疗方面优于传统抗体。与所有蛋白治疗剂一样,需要对其进行扩展安全性评估,并特别研究其可能的免疫原性。在这项研究中,我们评估了两种处于 II 期临床试验阶段的 Nb 的免疫原性风险概况:一种是针对人表皮生长因子受体 2(HER2)的 Nb,用于乳腺癌的 PET 成像;另一种是针对巨噬细胞甘露糖受体(MMR)的 Nb,用于肿瘤相关巨噬细胞的 PET 成像。对于抗 HER2 的 Nb,我们发现只有 20 名患者中的 1 名有少量预先存在的抗药物抗体(ADA),这在给予 Nb 3 个月后仅略有增加,并且没有安全性和药代动力学的负面影响。进一步的免疫原性评估检测表明,两种非人源化的 Nb 都被人树突状细胞摄取,但没有或只有轻微的能力激活树突状细胞或诱导 T 细胞增殖。从我们的数据中,我们得出结论,单体 Nb 呈现出低免疫原性风险概况,这为它们未来的发展提供了有希望的应用于潜在的临床应用。

一句话总结:纳米抗体,来源于骆驼重链抗体的单域重组亲和力试剂,已被证明具有低免疫原性风险概况,这将促进越来越多的纳米抗体进入临床,用于治疗或诊断应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/6f6ba7f231c3/fimmu-12-632687-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/8c3b44e97341/fimmu-12-632687-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/8d1daf8f903b/fimmu-12-632687-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/808aa77cf13a/fimmu-12-632687-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/e53c5f8d6ce9/fimmu-12-632687-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/6a43862842fa/fimmu-12-632687-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/a54b6a834f9d/fimmu-12-632687-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/6f6ba7f231c3/fimmu-12-632687-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/8c3b44e97341/fimmu-12-632687-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/8d1daf8f903b/fimmu-12-632687-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/808aa77cf13a/fimmu-12-632687-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/e53c5f8d6ce9/fimmu-12-632687-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/6a43862842fa/fimmu-12-632687-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/a54b6a834f9d/fimmu-12-632687-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed8/7985456/6f6ba7f231c3/fimmu-12-632687-g0007.jpg

相似文献

[1]
Immunogenicity Risk Profile of Nanobodies.

Front Immunol. 2021

[2]
Streamlined method for parallel identification of single domain antibodies to membrane receptors on whole cells.

Biochim Biophys Acta. 2015-7

[3]
Labeling of Anti-HER2 Nanobodies with Astatine-211: Optimization and the Effect of Different Coupling Reagents on Their in Vivo Behavior.

Mol Pharm. 2019-7-3

[4]
Engineered cross-reacting nanobodies simplify comparative oncology between humans and dogs.

Vet Comp Oncol. 2018-3

[5]
Nanobodies and Cancer: Current Status and New Perspectives.

Cancer Invest. 2018-4-21

[6]
A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent Cross-Neutralizing Activity and Protective Efficacy against MERS-CoV.

J Virol. 2018-8-29

[7]
Phase I Study of 68Ga-HER2-Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma.

J Nucl Med. 2015-10-8

[8]
A guide to: generation and design of nanobodies.

FEBS J. 2021-4

[9]
Size-advantage of monovalent nanobodies against the macrophage mannose receptor for deep tumor penetration and tumor-associated macrophage targeting.

Theranostics. 2023

[10]
Enhanced Ability of Oligomeric Nanobodies Targeting MERS Coronavirus Receptor-Binding Domain.

Viruses. 2019-2-19

引用本文的文献

[1]
Nanobody therapy rescues behavioural deficits of NMDA receptor hypofunction.

Nature. 2025-7-23

[2]
Developing drug-like single-domain antibodies (VHH) from in vitro libraries.

MAbs. 2025-12

[3]
Potentiating cancer immunotherapies with modular albumin-hitchhiking nanobody-STING agonist conjugates.

Nat Biomed Eng. 2025-6-11

[4]
Nanobodies and their derivatives: pioneering the future of cancer immunotherapy.

Cell Commun Signal. 2025-6-5

[5]
Nanobodies: From Discovery to AI-Driven Design.

Biology (Basel). 2025-5-14

[6]
ADCC: the rock band led by therapeutic antibodies, tumor and immune cells.

Front Immunol. 2025-4-16

[7]
Nanoscale warriors against viral invaders: a comprehensive review of Nanobodies as potential antiviral therapeutics.

MAbs. 2025-12

[8]
Modular Platform for Efficient Assembly of Multifunctional Antibodies Using Orthogonal Protein-Protein Interactions.

ACS Appl Mater Interfaces. 2025-4-9

[9]
Engineered Probiotic Saccharomyces boulardii Reduces Colitis-Associated Colorectal Cancer Burden in Mice.

Dig Dis Sci. 2025-3-29

[10]
Magnetic bead-sensitized optoporation coupled with antibodies-based activation for mRNA CAR-T cell manufacturing.

Mol Ther Methods Clin Dev. 2025-2-4

本文引用的文献

[1]
Generation of novel affibody molecules targeting the EBV LMP2A N-terminal domain with inhibiting effects on the proliferation of nasopharyngeal carcinoma cells.

Cell Death Dis. 2020-4-1

[2]
Theranostics in immuno-oncology using nanobody derivatives.

Theranostics. 2019-10-15

[3]
The Therapeutic Potential of Nanobodies.

BioDrugs. 2020-2

[4]
Nanobody approval gives domain antibodies a boost.

Nat Rev Drug Discov. 2019-7

[5]
Clinical Translation of [Ga]Ga-NOTA-anti-MMR-sdAb for PET/CT Imaging of Protumorigenic Macrophages.

Mol Imaging Biol. 2019-10

[6]
Caplacizumab Treatment for Acquired Thrombotic Thrombocytopenic Purpura.

N Engl J Med. 2019-1-9

[7]
Therapeutic application of antibody fragments in autoimmune diseases: current state and prospects.

Drug Discov Today. 2018-6-8

[8]
The structural basis of nanobody unfolding reversibility and thermoresistance.

Sci Rep. 2018-5-21

[9]
Exploiting Nanobodies' Singular Traits.

Annu Rev Immunol. 2018-2-28

[10]
Human in vivo-differentiated monocyte-derived dendritic cells.

Semin Cell Dev Biol. 2018-2-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索