Suppr超能文献

基于综合生物信息学方法的肝细胞癌潜在关键基因的鉴定与分析

Identification and Analysis of Potential Key Genes Associated With Hepatocellular Carcinoma Based on Integrated Bioinformatics Methods.

作者信息

Li Zhuolin, Lin Yao, Cheng Bizhen, Zhang Qiaoxin, Cai Yingmu

机构信息

Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, China.

Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.

出版信息

Front Genet. 2021 Mar 9;12:571231. doi: 10.3389/fgene.2021.571231. eCollection 2021.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) is a type of primary liver tumor with poor prognosis and high mortality, and its molecular mechanism remains incompletely understood. This study aimed to use bioinformatics technology to identify differentially expressed genes (DEGs) in HCC pathogenesis, hoping to identify novel biomarkers or potential therapeutic targets for HCC research.

METHODS

The bioinformatics analysis of our research mostly involved the following two datasets: Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). First, we screened DEGs based on the R packages (limma and edgeR). Using the DAVID database, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were carried out. Next, the protein-protein interaction (PPI) network of the DEGs was built in the STRING database. Then, hub genes were screened through the cytoHubba plug-in, followed by verification using the GEPIA and Oncomine databases. We demonstrated differences in levels of the protein in hub genes using the Human Protein Atlas (HPA) database. Finally, the hub genes prognostic values were analyzed by the GEPIA database. Additionally, using the Comparative Toxicogenomics Database (CTD), we constructed the drug-gene interaction network.

RESULTS

We ended up with 763 DEGs, including 247 upregulated and 516 downregulated DEGs, that were mainly enriched in the epoxygenase P450 pathway, oxidation-reduction process, and metabolism-related pathways. Through the constructed PPI network, it can be concluded that the P53 signaling pathway and the cell cycle are the most obvious in module analysis. From the PPI, we filtered out eight hub genes, and these genes were significantly upregulated in HCC samples, findings consistent with the expression validation results. Additionally, survival analysis showed that high level gene expression of CDC20, CDK1, MAD2L1, BUB1, BUB1B, CCNB1, and CCNA2 were connected with the poor overall survival of HCC patients. Toxicogenomics analysis showed that only topotecan, oxaliplatin, and azathioprine could reduce the gene expression levels of all seven hub genes.

CONCLUSION

The present study screened out the key genes and pathways that were related to HCC pathogenesis, which could provide new insight for the future molecularly targeted therapy and prognosis evaluation of HCC.

摘要

背景

肝细胞癌(HCC)是一种预后较差、死亡率较高的原发性肝脏肿瘤,其分子机制仍未完全明确。本研究旨在利用生物信息学技术鉴定HCC发病机制中的差异表达基因(DEGs),以期为HCC研究鉴定新的生物标志物或潜在治疗靶点。

方法

本研究的生物信息学分析主要涉及以下两个数据集:基因表达综合数据库(GEO)和癌症基因组图谱(TCGA)。首先,我们基于R包(limma和edgeR)筛选DEGs。利用DAVID数据库对DEGs进行基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析。接下来,在STRING数据库中构建DEGs的蛋白质-蛋白质相互作用(PPI)网络。然后,通过cytoHubba插件筛选枢纽基因,随后使用GEPIA和Oncomine数据库进行验证。我们利用人类蛋白质图谱(HPA)数据库展示了枢纽基因中蛋白质水平的差异。最后,通过GEPIA数据库分析枢纽基因的预后价值。此外,利用比较毒理基因组学数据库(CTD)构建药物-基因相互作用网络。

结果

我们最终得到763个DEGs,其中包括247个上调DEGs和516个下调DEGs,这些基因主要富集于环氧合酶P450途径、氧化还原过程和代谢相关途径。通过构建的PPI网络可知,在模块分析中P53信号通路和细胞周期最为明显。从PPI中,我们筛选出8个枢纽基因,这些基因在HCC样本中显著上调,这一结果与表达验证结果一致。此外,生存分析表明,细胞分裂周期蛋白20(CDC20)、细胞周期蛋白依赖性激酶1(CDK1)、有丝分裂阻滞缺陷蛋白2样1(MAD2L1)、BUB1有丝分裂检查点蛋白(BUB1)、BUB1有丝分裂检查点蛋白B(BUB1B)、细胞周期蛋白B1(CCNB1)和细胞周期蛋白A2(CCNA2)的高水平基因表达与HCC患者较差的总生存期相关。毒理基因组学分析表明,只有拓扑替康、奥沙利铂和硫唑嘌呤可降低所有7个枢纽基因的表达水平。

结论

本研究筛选出了与HCC发病机制相关的关键基因和途径,可为未来HCC的分子靶向治疗和预后评估提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/713e/7985067/0f97b80ec5b1/fgene-12-571231-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验