Suppr超能文献

通过生物信息学分析鉴定参与肝细胞癌发生发展的枢纽基因。

Identification of hub genes involved in the occurrence and development of hepatocellular carcinoma via bioinformatics analysis.

作者信息

Mi Ningning, Cao Jie, Zhang Jinduo, Fu Wenkang, Huang Chongfei, Gao Long, Yue Ping, Bai Bing, Lin Yanyan, Meng Wenbo, Li Xun

机构信息

The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.

Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.

出版信息

Oncol Lett. 2020 Aug;20(2):1695-1708. doi: 10.3892/ol.2020.11752. Epub 2020 Jun 17.

Abstract

Hepatocellular carcinoma (HCC) is a heterogeneous malignancy, which is a major cause of cancer morbidity and mortality worldwide. Thus, the aim of the present study was to identify the hub genes and underlying pathways of HCC via bioinformatics analyses. The present study screened three datasets, including GSE112790, GSE84402 and GSE74656 from the Gene Expression Omnibus (GEO) database, and downloaded the RNA-sequencing of HCC from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) in both the GEO and TCGA datasets were filtered, and the screened DEGs were subsequently analyzed for functional enrichment pathways. A protein-protein interaction (PPI) network was constructed, and hub genes were further screened to create the Kaplan-Meier curve using cBioPortal. The expression levels of hub genes were then validated in different datasets using the Oncomine database. In addition, associations between expression and tumor grade, hepatitis virus infection status, satellites and vascular invasion were assessed. A total of 126 DEGs were identified, containing 70 upregulated genes and 56 downregulated genes from the GEO and TCGA databases. By constructing the PPI network, the present study identified hub genes, including cyclin B1 (CCNB1), cell-division cycle protein 20 (CDC20), cyclin-dependent kinase 1, BUB1 mitotic checkpoint serine/threonine kinase β (BUB1B), cyclin A2, nucleolar and spindle associated protein 1, ubiquitin-conjugating enzyme E2 C (UBE2C) and ZW10 interactor. Furthermore, upregulated CCNB1, CDC20, BUB1B and UBE2C expression levels indicated worse disease-free and overall survival. Moreover, a meta-analysis of tumor and healthy tissues in the Oncomine database demonstrated that BUB1B and UBE2C were highly expressed in HCC. The present study also analyzed the data of HCC in TCGA database using univariate and multivariate Cox analyses, and demonstrated that BUB1B and UBE2C may be used as independent prognostic factors. In conclusion, the present study identified several genes and the signaling pathways that were associated with tumorigenesis using bioinformatics analyses, which could be potential targets for the diagnosis and treatment of HCC.

摘要

肝细胞癌(HCC)是一种异质性恶性肿瘤,是全球癌症发病率和死亡率的主要原因。因此,本研究的目的是通过生物信息学分析确定HCC的核心基因和潜在途径。本研究从基因表达综合数据库(GEO)中筛选了三个数据集,包括GSE112790、GSE84402和GSE74656,并从癌症基因组图谱(TCGA)数据库下载了HCC的RNA测序数据。对GEO和TCGA数据集中的差异表达基因(DEG)进行筛选,随后对筛选出的DEG进行功能富集途径分析。构建蛋白质-蛋白质相互作用(PPI)网络,并使用cBioPortal进一步筛选核心基因以创建Kaplan-Meier曲线。然后使用Oncomine数据库在不同数据集中验证核心基因的表达水平。此外,评估了表达与肿瘤分级、肝炎病毒感染状态、卫星灶和血管侵犯之间的关联。共鉴定出126个DEG,其中包括来自GEO和TCGA数据库的70个上调基因和56个下调基因。通过构建PPI网络,本研究确定了核心基因,包括细胞周期蛋白B1(CCNB1)、细胞分裂周期蛋白20(CDC20)、细胞周期蛋白依赖性激酶1、BUB1有丝分裂检查点丝氨酸/苏氨酸激酶β(BUB1B)、细胞周期蛋白A2、核仁与纺锤体相关蛋白1、泛素结合酶E2 C(UBE2C)和ZW10相互作用蛋白。此外,CCNB1、CDC20、BUB1B和UBE2C表达水平上调表明无病生存期和总生存期较差。此外,Oncomine数据库中肿瘤组织和健康组织的荟萃分析表明,BUB1B和UBE2C在HCC中高表达。本研究还使用单变量和多变量Cox分析对TCGA数据库中的HCC数据进行了分析,并证明BUB1B和UBE2C可作为独立的预后因素。总之,本研究通过生物信息学分析确定了几个与肿瘤发生相关的基因和信号通路,这些可能是HCC诊断和治疗的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/7377146/c806bb2dc1de/ol-20-02-1695-g00.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验