Suppr超能文献

保守转录因子中的翻译后修饰:人类和小鼠中TALE-同源结构域超类的综述

Posttranslational Modifications in Conserved Transcription Factors: A Survey of the TALE-Homeodomain Superclass in Human and Mouse.

作者信息

Reichlmeir Marina, Elias Lena, Schulte Dorothea

机构信息

Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany.

出版信息

Front Cell Dev Biol. 2021 Mar 9;9:648765. doi: 10.3389/fcell.2021.648765. eCollection 2021.

Abstract

Transcription factors (TFs) guide effector proteins like chromatin-modifying or -remodeling enzymes to distinct sites in the genome and thereby fulfill important early steps in translating the genome's sequence information into the production of proteins or functional RNAs. TFs of the same family are often highly conserved in evolution, raising the question of how proteins with seemingly similar structure and DNA-binding properties can exert physiologically distinct functions or respond to context-specific extracellular cues. A good example is the TALE superclass of homeodomain-containing proteins. All TALE-homeodomain proteins share a characteristic, 63-amino acid long homeodomain and bind to similar sequence motifs. Yet, they frequently fulfill non-redundant functions even in domains of co-expression and are subject to regulation by different signaling pathways. Here we provide an overview of posttranslational modifications that are associated with murine and human TALE-homeodomain proteins and discuss their possible importance for the biology of these TFs.

摘要

转录因子(TFs)引导诸如染色质修饰或重塑酶等效应蛋白至基因组中的不同位点,从而在将基因组序列信息转化为蛋白质或功能性RNA的产生过程中完成重要的早期步骤。同一家族的转录因子在进化过程中通常高度保守,这就引发了一个问题:结构和DNA结合特性看似相似的蛋白质如何发挥生理上不同的功能或对特定背景的细胞外信号作出反应。一个很好的例子是含同源结构域的TALE超类蛋白。所有TALE-同源结构域蛋白都共享一个特征性的、63个氨基酸长的同源结构域,并结合相似的序列基序。然而,它们即使在共表达区域也常常发挥非冗余功能,并受到不同信号通路的调控。在这里,我们概述了与小鼠和人类TALE-同源结构域蛋白相关的翻译后修饰,并讨论了它们对这些转录因子生物学特性的可能重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76bd/7985065/9a688fba20e7/fcell-09-648765-g001.jpg

相似文献

1
Posttranslational Modifications in Conserved Transcription Factors: A Survey of the TALE-Homeodomain Superclass in Human and Mouse.
Front Cell Dev Biol. 2021 Mar 9;9:648765. doi: 10.3389/fcell.2021.648765. eCollection 2021.
2
HOXA1 and TALE proteins display cross-regulatory interactions and form a combinatorial binding code on HOXA1 targets.
Genome Res. 2017 Sep;27(9):1501-1512. doi: 10.1101/gr.219386.116. Epub 2017 Aug 7.
3
Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution.
J Mol Evol. 2007 Aug;65(2):137-53. doi: 10.1007/s00239-006-0023-0. Epub 2007 Jul 30.
4
Range of HOX/TALE superclass associations and protein domain requirements for HOXA13:MEIS interaction.
Dev Biol. 2005 Jan 15;277(2):457-71. doi: 10.1016/j.ydbio.2004.10.004.
6
TALE transcription factors: Cofactors no more.
Semin Cell Dev Biol. 2024 Jan-Feb;152-153:76-84. doi: 10.1016/j.semcdb.2022.11.015. Epub 2022 Dec 9.
9
Hox cofactors in vertebrate development.
Dev Biol. 2006 Mar 15;291(2):193-206. doi: 10.1016/j.ydbio.2005.10.032. Epub 2006 Mar 3.
10

引用本文的文献

1
Comprehensive summary: the role of PBX1 in development and cancers.
Front Cell Dev Biol. 2024 Jul 26;12:1442052. doi: 10.3389/fcell.2024.1442052. eCollection 2024.
2
The neuronal transcription factor MEIS2 is a calpain-2 protease target.
J Cell Sci. 2024 Feb 15;137(4). doi: 10.1242/jcs.261482. Epub 2024 Feb 28.

本文引用的文献

1
HOX paralogs selectively convert binding of ubiquitous transcription factors into tissue-specific patterns of enhancer activation.
PLoS Genet. 2020 Dec 14;16(12):e1009162. doi: 10.1371/journal.pgen.1009162. eCollection 2020 Dec.
3
MEIS transcription factors in development and disease.
Development. 2019 Aug 15;146(16):dev174706. doi: 10.1242/dev.174706.
4
Cellular consequences of arginine methylation.
Cell Mol Life Sci. 2019 Aug;76(15):2933-2956. doi: 10.1007/s00018-019-03140-2. Epub 2019 May 17.
5
'Building a perfect body': control of vertebrate organogenesis by PBX-dependent regulatory networks.
Genes Dev. 2019 Mar 1;33(5-6):258-275. doi: 10.1101/gad.318774.118.
6
Post-translational modifications of HOX proteins, an underestimated issue.
Int J Dev Biol. 2018;62(11-12):733-744. doi: 10.1387/ijdb.180178rr.
7
TGIF1 homeodomain interacts with Smad MH1 domain and represses TGF-β signaling.
Nucleic Acids Res. 2018 Sep 28;46(17):9220-9235. doi: 10.1093/nar/gky680.
8
UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites.
Nat Struct Mol Biol. 2018 Jul;25(7):631-640. doi: 10.1038/s41594-018-0084-y. Epub 2018 Jul 2.
9
Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors.
Stem Cell Reports. 2018 Apr 10;10(4):1184-1192. doi: 10.1016/j.stemcr.2018.03.010.
10
Exploring the Function of Dynamic Phosphorylation-Dephosphorylation Cycles.
Dev Cell. 2018 Mar 26;44(6):659-663. doi: 10.1016/j.devcel.2018.03.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验