Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, Florida, 32610, USA.
AbbVie Inc., North Chicago, Illinois, USA.
AAPS J. 2021 Mar 25;23(3):48. doi: 10.1208/s12248-021-00569-x.
In the context of streamlining generic approval, this study assessed whether pharmacokinetics (PK) could elucidate the pulmonary fate of orally inhaled drug products (OIDPs). Three fluticasone propionate (FP) dry powder inhaler (DPI) formulations (A-4.5, B-3.8, and C-3.7), differing only in type and composition of lactose fines, exhibited median mass aerodynamic diameter (MMAD) of 4.5 μm (A-4.5), 3.8 μm (B-3.8), and 3.7 μm (C-3.7) and varied in dissolution rates (A-4.5 slower than B-3.8 and C-3.7). In vitro total lung dose (TLD) was determined as the average dose passing through three anatomical mouth-throat (MT) models and yielded dose normalization factors (DNF) for each DPI formulation X (DNF = TLD/TLD). The DNF was 1.00 for A-4.5, 1.32 for B-3.8, and 1.21 for C-3.7. Systemic PK after inhalation of 500 μg FP was assessed in a randomized, double-blind, four-way crossover study in 24 healthy volunteers. Peak concentrations (C) of A-4.5 relative to those of B-3.8 or C-3.7 lacked bioequivalence without or with dose normalization. The area under the curve (AUC) was bio-IN-equivalent before dose normalization and bioequivalent after dose normalization. Thus, PK could detect differences in pulmonary available dose (AUC) and residence time (dose-normalized C). The differences in dose-normalized C could not be explained by differences in in vitro dissolution. This might suggest that C differences may indicate differences in regional lung deposition. Overall this study supports the use of PK studies to provide relevant information on the pulmonary performance characteristics (i.e., available dose, residence time, and regional lung deposition).
在简化通用批准的背景下,本研究评估了药代动力学(PK)是否可以阐明口服吸入药物产品(OIDP)的肺部命运。三种氟替卡松丙酸酯(FP)干粉吸入器(DPI)制剂(A-4.5、B-3.8 和 C-3.7)仅在乳糖细粉的类型和组成上有所不同,表现出中位质量空气动力学直径(MMAD)分别为 4.5μm(A-4.5)、3.8μm(B-3.8)和 3.7μm(C-3.7),并且溶解速率不同(A-4.5 慢于 B-3.8 和 C-3.7)。体外总肺剂量(TLD)被确定为穿过三个解剖学口-喉(MT)模型的平均剂量,并为每个 DPI 制剂 X 产生剂量归一化因子(DNF)(DNF = TLD/TLD)。A-4.5 的 DNF 为 1.00,B-3.8 的 DNF 为 1.32,C-3.7 的 DNF 为 1.21。在 24 名健康志愿者中进行的一项随机、双盲、四交叉研究中,评估了吸入 500μg FP 后的系统 PK。A-4.5 相对于 B-3.8 或 C-3.7 的峰浓度(C)在不进行或进行剂量归一化时缺乏生物等效性。在进行剂量归一化之前,AUC 具有生物-IN 等效性,而在进行剂量归一化之后,AUC 具有生物等效性。因此,PK 可以检测到肺部可用剂量(AUC)和停留时间(剂量归一化 C)的差异。在剂量归一化 C 方面的差异不能用体外溶解的差异来解释。这可能表明 C 的差异可能表明区域肺沉积的差异。总体而言,本研究支持使用 PK 研究提供有关肺部性能特征的相关信息(即可用剂量、停留时间和区域肺沉积)。