Suppr超能文献

用于癌症临床试验资格筛查的人工智能系统的准确性:回顾性试点研究。

Accuracy of an Artificial Intelligence System for Cancer Clinical Trial Eligibility Screening: Retrospective Pilot Study.

作者信息

Haddad Tufia, Helgeson Jane M, Pomerleau Katharine E, Preininger Anita M, Roebuck M Christopher, Dankwa-Mullan Irene, Jackson Gretchen Purcell, Goetz Matthew P

机构信息

Mayo Clinic, Rochester, MN, United States.

IBM Watson Health, Cambridge, ME, United States.

出版信息

JMIR Med Inform. 2021 Mar 26;9(3):e27767. doi: 10.2196/27767.

Abstract

BACKGROUND

Screening patients for eligibility for clinical trials is labor intensive. It requires abstraction of data elements from multiple components of the longitudinal health record and matching them to inclusion and exclusion criteria for each trial. Artificial intelligence (AI) systems have been developed to improve the efficiency and accuracy of this process.

OBJECTIVE

This study aims to evaluate the ability of an AI clinical decision support system (CDSS) to identify eligible patients for a set of clinical trials.

METHODS

This study included the deidentified data from a cohort of patients with breast cancer seen at the medical oncology clinic of an academic medical center between May and July 2017 and assessed patient eligibility for 4 breast cancer clinical trials. CDSS eligibility screening performance was validated against manual screening. Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for eligibility determinations were calculated. Disagreements between manual screeners and the CDSS were examined to identify sources of discrepancies. Interrater reliability between manual reviewers was analyzed using Cohen (pairwise) and Fleiss (three-way) κ, and the significance of differences was determined by Wilcoxon signed-rank test.

RESULTS

In total, 318 patients with breast cancer were included. Interrater reliability for manual screening ranged from 0.60-0.77, indicating substantial agreement. The overall accuracy of breast cancer trial eligibility determinations by the CDSS was 87.6%. CDSS sensitivity was 81.1% and specificity was 89%.

CONCLUSIONS

The AI CDSS in this study demonstrated accuracy, sensitivity, and specificity of greater than 80% in determining the eligibility of patients for breast cancer clinical trials. CDSSs can accurately exclude ineligible patients for clinical trials and offer the potential to increase screening efficiency and accuracy. Additional research is needed to explore whether increased efficiency in screening and trial matching translates to improvements in trial enrollment, accruals, feasibility assessments, and cost.

摘要

背景

筛选患者是否符合临床试验资格的工作强度很大。这需要从纵向健康记录的多个组成部分提取数据元素,并将它们与每个试验的纳入和排除标准进行匹配。已经开发了人工智能(AI)系统来提高这一过程的效率和准确性。

目的

本研究旨在评估人工智能临床决策支持系统(CDSS)识别一组临床试验合格患者的能力。

方法

本研究纳入了2017年5月至7月在一所学术医疗中心的医学肿瘤诊所就诊的一组乳腺癌患者的去识别化数据,并评估了患者参加4项乳腺癌临床试验的资格。CDSS资格筛选性能通过与人工筛选进行验证。计算了资格判定的准确性、敏感性、特异性、阳性预测值和阴性预测值。检查人工筛选者与CDSS之间的分歧以确定差异来源。使用Cohen(成对)和Fleiss(三方)κ分析人工审核员之间的评分者间信度,并通过Wilcoxon符号秩检验确定差异的显著性。

结果

总共纳入了318例乳腺癌患者。人工筛选的评分者间信度范围为0.60 - 0.77,表明有实质性一致性。CDSS对乳腺癌试验资格判定的总体准确性为87.6%。CDSS敏感性为81.1%,特异性为89%。

结论

本研究中的人工智能CDSS在确定患者参加乳腺癌临床试验的资格方面表现出大于80%的准确性、敏感性和特异性。CDSS可以准确排除不符合临床试验资格的患者,并有可能提高筛选效率和准确性。需要进一步研究以探索筛选和试验匹配效率的提高是否转化为试验入组、招募、可行性评估和成本方面的改善。

相似文献

8

引用本文的文献

6
A Deployed Online Reinforcement Learning Algorithm In An Oral Health Clinical Trial.一种应用于口腔健康临床试验的在线强化学习算法
Proc AAAI Conf Artif Intell. 2025;39(28):28792-28800. doi: 10.1609/aaai.v39i28.35143. Epub 2025 Apr 11.

本文引用的文献

7
Improving clinical trial accrual by streamlining the referral process.通过简化转诊流程提高临床试验入组率。
Int J Med Inform. 2015 Jan;84(1):15-23. doi: 10.1016/j.ijmedinf.2014.09.001. Epub 2014 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验