Suppr超能文献

从 DNA 序列估计分歧时间。

Estimating divergence times from DNA sequences.

机构信息

Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, Uppsala 752 36, Sweden.

Science for Life Laboratory, Uppsala University, Norbyvägen 18 A, Uppsala 752 36, Sweden.

出版信息

Genetics. 2021 Apr 15;217(4). doi: 10.1093/genetics/iyab008.

Abstract

The patterns of genetic variation within and among individuals and populations can be used to make inferences about the evolutionary forces that generated those patterns. Numerous population genetic approaches have been developed in order to infer evolutionary history. Here, we present the "Two-Two (TT)" and the "Two-Two-outgroup (TTo)" methods; two closely related approaches for estimating divergence time based in coalescent theory. They rely on sequence data from two haploid genomes (or a single diploid individual) from each of two populations. Under a simple population-divergence model, we derive the probabilities of the possible sample configurations. These probabilities form a set of equations that can be solved to obtain estimates of the model parameters, including population split times, directly from the sequence data. This transparent and computationally efficient approach to infer population divergence time makes it possible to estimate time scaled in generations (assuming a mutation rate), and not as a compound parameter of genetic drift. Using simulations under a range of demographic scenarios, we show that the method is relatively robust to migration and that the TTo method can alleviate biases that can appear from drastic ancestral population size changes. We illustrate the utility of the approaches with some examples, including estimating split times for pairs of human populations as well as providing further evidence for the complex relationship among Neandertals and Denisovans and their ancestors.

摘要

个体和群体内部及之间的遗传变异模式可用于推断产生这些模式的进化力量。为了推断进化历史,已经开发了许多群体遗传学方法。在这里,我们提出了“双二(TT)”和“双二外群(TTo)”方法;这两种方法是基于合并理论的两种密切相关的估计分歧时间的方法。它们依赖于来自两个群体中每个群体的两个单倍体基因组(或单个二倍体个体)的序列数据。在简单的群体分歧模型下,我们推导出可能的样本配置的概率。这些概率形成了一组方程,可以从序列数据中直接求解模型参数的估计值,包括群体分裂时间。这种从序列数据直接推断群体分歧时间的透明且计算效率高的方法使得可以估计按世代划分的时间(假设突变率),而不是作为遗传漂变的复合参数。通过在一系列人口统计学场景下进行模拟,我们表明该方法对迁移相对稳健,并且 TTo 方法可以减轻由于祖先人口规模的剧烈变化而出现的偏差。我们通过一些示例说明了这些方法的实用性,包括估计人类群体对的分裂时间,并为尼安德特人和丹尼索万人及其祖先之间的复杂关系提供了进一步的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73e5/8049563/9cb580f6d040/iyab008f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验