Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, People's Republic of China.
Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, People's Republic of China.
J Mol Med (Berl). 2021 Jul;99(7):967-980. doi: 10.1007/s00109-021-02069-z. Epub 2021 Mar 26.
Reactive oxygen species (ROS), a by-product of oxygen metabolism mainly originating from mitochondria, participate in many pathological processes related to ophthalmopathy. Excessive production of ROS leads to oxidative stress, which influences the permeability, proliferation, migration, and tube formation of human retinal microcapillary endothelial cells (HRMECs). The molecular mechanisms underlying the effects of ROS are not clear. In Vldlr-/- mice, we used fundus fluorescein angiography and retinal flat mount staining to observe the effect of polypyrimidine tract-binding protein-associated splicing factor (PSF) on pathological retinal neovascularization in vivo. Additionally, in human retinal microvascular endothelial cells treated with 4-HNE, cell viability, tube formation, wound healing, and Transwell assays were performed to study the effect of PSF on the proliferation, migration, and tube formation of retinal vascular endothelial cells in vitro. Moreover, reactive oxygen species assay, real-time PCR, and Western blot were included to analyze the potential mechanism of PSF in the above series of effects. PSF ameliorated intraretinal neovascularization (IRNV) in vivo in Vldlr-/- mice. Under 4-hydroxynonenal (4-HNE) conditions in vitro, PSF reprogrammed mitochondrial bioenergetic and glycolytic profiles. It also reduced ROS levels and inhibited 4-HNE-induced angiogenesis, which involves the proliferation, migration, and tube formation of HRMECs. These results suggest that PSF participates in the regulation of HRMECs proliferation and migration during the development of pathological angiogenesis. We demonstrated that PSF enhanced Nrf2 activation and heme oxygenase-1 (HO-1) expression via extracellular signal-regulated kinase (ERK) and Akt signaling in HRMECs, which subsequently resulted in intracellular ROS scavenging. PSF restored endoplasmic reticulum (ER) redox homeostasis, which was indicated by an increase in protein disulfide isomerase (PDI) and Ero-1α and a reduction in GRP78 and C/EBP homologous protein (CHOP). PSF also attenuated ER stress via regulation of the protein kinase R (PKR)-like endoplasmic reticulum kinase PERK/eukaryotic translation factor 2 alpha (eIF2α)/activating transcription factor 4 (ATF4) pathway in 4-HNE-treated HRMECs. Our research shows that PSF may be a potential antioxidant that regulates pathological angiogenesis through ERK-AKT/Nrf2/HO-1 and PERK/eIF2α/ATF4 signal regulation. KEY MESSAGES: Reactive oxygen species (ROS) mainly originating from mitochondria is a by-product of oxygen metabolism in the body and participates in the pathological process related to multiple blindness-related ophthalmopathy. Moreover , excessive production of ROS will lead to oxidative stress. Consequently, oxidative stress influences the permeability, proliferation, migration, and tube formation of human retinal microcapillary endothelial cells (HRMECs). The molecular mechanisms underlying the effects of ROS remain unclear. Here, we reveal that Polypyrimidine tract-binding protein-associated splicing factor (PSF) ameliorates intraretinal neovascularization (IRNV) in vivo in Vldlr-/- mice. Furthermore, under 4-HNE conditions in vitro, PSF reprograms mitochondrial bioenergetic and glycolytic profiles, reduces ROS levels, and inhibits 4-HNE-induced angiogenesis, which involves the proliferation, migration, and tube formation of HRMECs, suggesting that it participates in regulating the proliferation and migration of HRMECs during the development of pathological angiogenesis. Furthermore, PSF enhances Nrf2 activation and HO-1 expression through ERK and AKT signaling in HRMECs, resulting in intracellular ROS scavenging. PSF restores endoplasmic reticulum (ER) redox homeostasis, as indicated by an increase in PDI and Ero-1α and a reduction in GRP78 and CHOP. PSF also attenuates ER stress by regulating the PERK/eIF2α/ATF4 pathway in 4-HNE-treated HRMECs.
活性氧(ROS)是一种主要来源于线粒体的氧代谢副产物,参与与眼病相关的许多病理过程。ROS 的过度产生会导致氧化应激,影响人视网膜微血管内皮细胞(HRMEC)的通透性、增殖、迁移和管形成。ROS 影响的分子机制尚不清楚。在 Vldlr-/- 小鼠中,我们使用眼底荧光血管造影和视网膜平片染色观察多嘧啶 tract-binding 蛋白相关剪接因子(PSF)对病理性视网膜新生血管形成的影响。此外,在 4-HNE 处理的人视网膜微血管内皮细胞中,进行细胞活力、管形成、划痕愈合和 Transwell 测定,以研究 PSF 对视网膜血管内皮细胞增殖、迁移和管形成的影响。此外,进行活性氧测定、实时 PCR 和 Western blot 分析 PSF 在上述一系列效应中的潜在机制。PSF 在 Vldlr-/- 小鼠体内改善了视网膜内新生血管化(IRNV)。在体外 4-羟壬烯醛(4-HNE)条件下,PSF 重塑了线粒体生物能量和糖酵解谱。它还降低了 ROS 水平,抑制了 4-HNE 诱导的血管生成,涉及 HRMEC 的增殖、迁移和管形成。这些结果表明 PSF 参与了病理性血管生成发展过程中 HRMEC 增殖和迁移的调节。我们证明 PSF 通过 HRMEC 中的细胞外信号调节激酶(ERK)和 Akt 信号增强 Nrf2 激活和血红素加氧酶-1(HO-1)表达,随后导致细胞内 ROS 清除。PSF 通过增加蛋白二硫键异构酶(PDI)和 Ero-1α以及减少 GRP78 和 C/EBP 同源蛋白(CHOP)恢复内质网(ER)氧化还原稳态。PSF 还通过调节 4-HNE 处理的 HRMEC 中的蛋白激酶 R(PKR)样内质网激酶 PERK/真核翻译起始因子 2α(eIF2α)/激活转录因子 4(ATF4)途径减轻 ER 应激。我们的研究表明,PSF 可能是一种潜在的抗氧化剂,通过 ERK-AKT/Nrf2/HO-1 和 PERK/eIF2α/ATF4 信号调节来调节病理性血管生成。关键信息:ROS 主要来源于线粒体,是体内氧代谢的副产物,参与与多种致盲性眼病相关的病理过程。此外,ROS 产生过多会导致氧化应激。因此,氧化应激会影响人视网膜微血管内皮细胞(HRMEC)的通透性、增殖、迁移和管形成。ROS 影响的分子机制尚不清楚。在这里,我们揭示多嘧啶 tract-binding 蛋白相关剪接因子(PSF)在 Vldlr-/- 小鼠体内改善了视网膜内新生血管化(IRNV)。此外,在体外 4-HNE 条件下,PSF 重塑了线粒体生物能量和糖酵解谱,降低了 ROS 水平,抑制了 4-HNE 诱导的血管生成,涉及 HRMEC 的增殖、迁移和管形成,表明它参与了病理性血管生成发展过程中 HRMEC 的增殖和迁移调节。此外,PSF 通过 HRMEC 中的 ERK 和 Akt 信号增强 Nrf2 激活和 HO-1 表达,导致细胞内 ROS 清除。PSF 通过增加 PDI 和 Ero-1α以及减少 GRP78 和 CHOP 恢复内质网(ER)氧化还原稳态。PSF 通过调节 4-HNE 处理的 HRMEC 中的 PERK/eIF2α/ATF4 途径减轻 ER 应激。