Suppr超能文献

带噪声建模的光谱独立成分分析在脑电/脑磁源分离中的应用。

Spectral Independent Component Analysis with noise modeling for M/EEG source separation.

机构信息

CNRS and DMA, Ecole Normale Supérieure - PSL University, Paris, France; Inria Saclay, Université Paris-Saclay, Palaiseau, France.

Institut d'Astrophysique de Paris, CNRS (UMR7095), Paris, France.

出版信息

J Neurosci Methods. 2021 May 15;356:109144. doi: 10.1016/j.jneumeth.2021.109144. Epub 2021 Mar 23.

Abstract

BACKGROUND

Independent Component Analysis (ICA) is a widespread tool for exploration and denoising of electroencephalography (EEG) or magnetoencephalography (MEG) signals. In its most common formulation, ICA assumes that the signal matrix is a noiseless linear mixture of independent sources that are assumed non-Gaussian. A limitation is that it enforces to estimate as many sources as sensors or to rely on a detrimental PCA step.

METHODS

We present the Spectral Matching ICA (SMICA) model. Signals are modelled as a linear mixing of independent sources corrupted by additive noise, where sources and the noise are stationary Gaussian time series. Thanks to the Gaussian assumption, the negative log-likelihood has a simple expression as a sum of 'divergences' between the empirical spectral covariance matrices of the signals and those predicted by the model. The model parameters can then be estimated by the expectation-maximization (EM) algorithm.

RESULTS

On phantom MEG datasets with low amplitude dipole sources (20 nAm), SMICA makes a median dipole localization error of 1.5 mm while competing methods make an error ≥7 mm. Experiments on EEG datasets show that SMICA identifies a source subspace which contains sources that have less pairwise mutual information, and are better explained by the projection of a single dipole on the scalp. With 10 sources, the number of strongly dipolar sources (dipolarity >90%) is more than 80% for SMICA while competing methods do not exceed 65%.

COMPARISON WITH EXISTING METHODS

With the noisy model of SMICA, the number of sources to be recovered is controlled by choosing the size of the mixing matrix to be fitted rather than by a preprocessing step of dimension reduction which is required in traditional noise-free ICA methods.

CONCLUSIONS

SMICA is a promising alternative to other noiseless ICA models based on non-Gaussian assumptions.

摘要

背景

独立成分分析(ICA)是一种广泛用于探索和去噪脑电图(EEG)或脑磁图(MEG)信号的工具。在其最常见的形式中,ICA 假设信号矩阵是独立源的无噪声线性混合,这些源被假设为非高斯分布。其局限性在于,它需要估计与传感器一样多的源,或者依赖于有害的 PCA 步骤。

方法

我们提出了谱匹配 ICA(SMICA)模型。信号被建模为独立源的线性混合,受到加性噪声的干扰,其中源和噪声是平稳的高斯时间序列。由于高斯假设,负对数似然具有一个简单的表达式,即信号的经验谱协方差矩阵与模型预测的谱协方差矩阵之间的“散度”之和。然后可以通过期望最大化(EM)算法来估计模型参数。

结果

在具有低幅度偶极子源(20nAm)的幻影 MEG 数据集上,SMICA 的中值偶极子定位误差为 1.5mm,而竞争方法的误差≥7mm。在 EEG 数据集上的实验表明,SMICA 确定了一个源子空间,其中包含互信息量较小的源,并且可以通过头皮上单个偶极子的投影更好地解释。对于 10 个源,SMICA 的强偶极子(偶极性>90%)数量超过 80%,而竞争方法不超过 65%。

与现有方法的比较

对于 SMICA 的噪声模型,可以通过选择要拟合的混合矩阵的大小来控制要恢复的源的数量,而不是通过传统无噪声 ICA 方法所需的降维预处理步骤来控制。

结论

SMICA 是其他基于非高斯假设的无噪声 ICA 模型的一种有前途的替代方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验