Suppr超能文献

多模态影像数据的自动融合用于识别磁共振成像结果不确定的患者中的致痫性病变。

Automated fusion of multimodal imaging data for identifying epileptogenic lesions in patients with inconclusive magnetic resonance imaging.

机构信息

Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.

Medical Faculty, Masaryk University, Brno, Czech Republic.

出版信息

Hum Brain Mapp. 2021 Jun 15;42(9):2921-2930. doi: 10.1002/hbm.25413. Epub 2021 Mar 27.

Abstract

Many methods applied to data acquired by various imaging modalities have been evaluated for their benefit in localizing lesions in magnetic resonance (MR) negative epilepsy patients. No approach has proven to be a stand-alone method with sufficiently high sensitivity and specificity. The presented study addresses the potential benefit of the automated fusion of results of individual methods in presurgical evaluation. We collected electrophysiological, MR, and nuclear imaging data from 137 patients with pharmacoresistant MR-negative/inconclusive focal epilepsy. A subgroup of 32 patients underwent surgical treatment with known postsurgical outcomes and histopathology. We employed a Gaussian mixture model to reveal several classes of gray matter tissue. Classes specific to epileptogenic tissue were identified and validated using the surgery subgroup divided into two disjoint sets. We evaluated the classification accuracy of the proposed method at a voxel-wise level and assessed the effect of individual methods. The training of the classifier resulted in six classes of gray matter tissue. We found a subset of two classes specific to tissue located in resected areas. The average classification accuracy (i.e., the probability of correct classification) was significantly higher than the level of chance in the training group (0.73) and even better in the validation surgery subgroup (0.82). Nuclear imaging, diffusion-weighted imaging, and source localization of interictal epileptic discharges were the strongest methods for classification accuracy. We showed that the automatic fusion of results can identify brain areas that show epileptogenic gray matter tissue features. The method might enhance the presurgical evaluations of MR-negative epilepsy patients.

摘要

许多应用于各种成像方式获取的数据的方法已经被评估用于定位磁共振(MR)阴性癫痫患者的病变。没有一种方法被证明具有足够高的灵敏度和特异性。本研究探讨了在术前评估中自动融合个体方法结果的潜在益处。我们从 137 名药物难治性 MR 阴性/不确定局灶性癫痫患者中收集了电生理、MR 和核成像数据。一个由 32 名患者组成的亚组接受了手术治疗,其术后结果和组织病理学已知。我们使用高斯混合模型揭示了几种灰质组织的类别。使用分为两个不相交组的手术亚组来识别和验证特定于致痫组织的类别。我们在体素水平评估了所提出方法的分类准确性,并评估了个体方法的效果。分类器的训练导致了六种灰质组织的类别。我们发现了一组两个特定于切除区域内组织的类别。在训练组(0.73)中,平均分类准确性(即正确分类的概率)显著高于随机水平,甚至在验证手术亚组中(0.82)更好。核成像、弥散加权成像和发作间期癫痫放电的源定位是分类准确性最强的方法。我们表明,结果的自动融合可以识别出显示致痫灰质组织特征的脑区。该方法可能会增强对 MR 阴性癫痫患者的术前评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12aa/8127142/dbe1948c0f81/HBM-42-2921-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验