Suppr超能文献

水系锌电池固态电解质界面的设计

Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries.

作者信息

Li Dan, Cao Longsheng, Deng Tao, Liu Sufu, Wang Chunsheng

机构信息

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.

Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.

出版信息

Angew Chem Int Ed Engl. 2021 Jun 1;60(23):13035-13041. doi: 10.1002/anie.202103390. Epub 2021 May 5.

Abstract

Aqueous Zn batteries are challenged by water decomposition and dendrite growth due to the absence of a dense Zn-ion conductive solid electrolyte interphase (SEI) to inhibit the hydrogen evolution reaction (HER). Here, we design a low-concentration aqueous Zn(OTF) -Zn(NO ) electrolyte to in situ form a robust inorganic ZnF -Zn (CO ) (OH) -organic bilayer SEI, where the inorganic inner layer promotes Zn-ion diffusion while the organic outer layer suppresses water penetration. We found that the insulating Zn (OH) (NO ) ⋅2 H O layer is first formed on the Zn anode surface by the self-terminated chemical reaction of NO with Zn and OH generated via HER, and then it transforms into Zn-ion conducting Zn (CO ) (OH) , which in turn promotes the formation of ZnF as the inner layer. The organic-dominated outer layer is formed by the reduction of OTF . The in situ formed SEI enables a high Coulombic efficiency (CE) of 99.8 % for 200 h in Ti∥Zn cells, and a high energy density (168 Wh kg ) with 96.5 % retention for 700 cycles in Zn∥MnO cells with a low Zn/MnO capacity ratio of 2:1.

摘要

水系锌电池由于缺乏致密的锌离子导电固体电解质界面(SEI)来抑制析氢反应(HER),面临着水分解和枝晶生长的挑战。在此,我们设计了一种低浓度的水系Zn(OTF)₂-Zn(NO₃)₂电解质,以原位形成坚固的无机ZnF₂-Zn₂(CO₃)(OH)₂-有机双层SEI,其中无机内层促进锌离子扩散,而有机外层抑制水的渗透。我们发现,绝缘的Zn₅(OH)₆(NO₃)·2H₂O层首先通过NO₃⁻与HER产生的Zn和OH的自终止化学反应在锌阳极表面形成,然后转变为锌离子导电的Zn₂(CO₃)(OH)₂,进而促进了作为内层的ZnF₂的形成。有机主导的外层由OTF⁻的还原形成。原位形成的SEI在Ti∥Zn电池中200小时内实现了99.8%的高库仑效率(CE),在低锌/二氧化锰容量比为2:1的Zn∥MnO₂电池中700次循环内实现了168 Wh kg⁻¹的高能量密度和96.5%的保持率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验