Suppr超能文献

用于高性能水系锌-(双)卤化物电池的电极/电解质优化诱导双层结构

Electrode/Electrolyte Optimization-Induced Double-Layered Architecture for High-Performance Aqueous Zinc-(Dual) Halogen Batteries.

作者信息

Zhou Chengwang, Ding Zhezheng, Ying Shengzhe, Jiang Hao, Wang Yan, Fang Timing, Zhang You, Sun Bing, Tang Xiao, Liu Xiaomin

机构信息

School of Textiles and Clothing, School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China.

Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

出版信息

Nanomicro Lett. 2024 Nov 7;17(1):58. doi: 10.1007/s40820-024-01551-w.

Abstract

Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources, intrinsic safety, and high theoretical capacity. Nevertheless, the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation. Herein, a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid (ZEA) artificial film and ZnF-rich solid electrolyte interphase (SEI) layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization. The ZEA-based artificial film shows strong affinity for the ZnF-rich SEI layer, therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode. Such double-layered architecture not only modulates Zn flux and suppresses the zinc dendrite growth, but also blocks the direct contact between the metal anode and electrolyte, thus mitigating the corrosion from the active species. When employing optimized metal anodes and electrolytes, the as-developed zinc-(dual) halogen batteries present high areal capacity and satisfactory cycling stability. This work provides a new avenue for developing aqueous zinc-(dual) halogen batteries.

摘要

水系锌-卤素电池因其资源丰富、本质安全和理论容量高,是大规模储能的有前景的候选者。然而,不可控的锌枝晶生长和活性物种的自发穿梭效应阻碍了它们的实际应用。在此,通过电极/电解质协同优化,在锌金属阳极上成功制备了一种基于锌-乙二胺四亚甲基膦酸(ZEA)人工膜和富含ZnF的固体电解质界面(SEI)层的双层保护膜。基于ZEA的人工膜对富含ZnF的SEI层表现出很强的亲和力,因此有效地抑制了SEI的破裂,并促进了锌金属阳极上双层保护膜的构建。这种双层结构不仅调节锌通量并抑制锌枝晶生长,还阻断了金属阳极与电解质之间的直接接触,从而减轻了活性物种的腐蚀。当采用优化的金属阳极和电解质时,所开发的锌-(双)卤素电池具有高面积容量和令人满意的循环稳定性。这项工作为开发水系锌-(双)卤素电池提供了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f65/11544112/3c732a544e42/40820_2024_1551_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验