Suppr超能文献

基于李和酸豆生物质的生物吸附剂用于处理合成废水。

Java plum and amaltash seed biomass based bio-adsorbents for synthetic wastewater treatment.

机构信息

Department of Botany, Maharaj Singh College, Saharanpur, 247001, Uttar Pradesh, India.

Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India.

出版信息

Environ Pollut. 2021 Jul 1;280:116890. doi: 10.1016/j.envpol.2021.116890. Epub 2021 Mar 19.

Abstract

Biomass of Java plum (JP) and amaltash (AT) seeds were employed to remove arsenic from synthetic wastewater, cost effectively. The prepared biomasses were characterized by FE-SEM, EDX, FTIR, XRD, and ICP techniques. Experimentation the optimization study has been carried out by using Design-software 6.0.8. Response surface methodology has been applied to design the experiments where we have used three factors and three levels Box-Behnken design (BBD). Arsenic removal ability of bio-sorbents was evaluated and optimized by varying pH, adsorbent dose concentration of arsenic in synthetic wastewater. For 2.5 mg/L arsenic concentration and 80 mg adsorbent dose at pH 8.8 Java plum seeds (JP) based bio-adsorbent removed ∼93% and amaltash seeds (AT) based bio-adsorbent removed ∼91% arsenic from synthetic wastewater. The adsorption behaviour better explained following Freundlich model (R = 0.99) compared to Temkin model (R = 0.986) for As (III) ions. The adsorption capacity was 1.45 mg g and 1.42 mg g for JP and AT, respectively after 80 min under optimal set of condition. The adsorption kinetics was explained by either pseudo-first order model or Elovich model.

摘要

利用爪哇李(JP)和阿拉伯胶(AT)种子的生物质来从合成废水中有效地去除砷。通过 FE-SEM、EDX、FTIR、XRD 和 ICP 技术对制备的生物质进行了表征。通过使用 Design-software 6.0.8 进行了实验优化研究。响应面法被应用于设计实验,其中我们使用了三个因素和三个水平的 Box-Behnken 设计(BBD)。通过改变 pH 值、合成废水中砷的吸附剂剂量浓度,评估和优化生物吸附剂的砷去除能力。对于 2.5mg/L 砷浓度和 80mg 吸附剂剂量,在 pH 8.8 下,基于爪哇李种子(JP)的生物吸附剂从合成废水中去除了约 93%的砷,而基于阿拉伯胶种子(AT)的生物吸附剂去除了约 91%的砷。与 Temkin 模型(R=0.986)相比,吸附行为更符合 Freundlich 模型(R=0.99),更能解释 As(III)离子的吸附行为。在最佳条件下 80 分钟后,JP 和 AT 的吸附容量分别为 1.45mg/g 和 1.42mg/g。吸附动力学可以用伪一级动力学模型或 Elovich 模型来解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验