Suppr超能文献

、和的废弃种子作为生物炭用于去除模拟废水中的重金属。

Waste seeds of , , and as biochar for heavy metal removal from simulated wastewater.

作者信息

Giri Deen Dayal, Jha Jay Mant, Srivastava Neha, Shah Maulin, H Almalki Atiah, F Alkhanani Mustfa, Pal Dan Bahadur

机构信息

Department of Botany, Maharaj Singh College, Saharanpur-247001, Uttar Pradesh, India.

Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal- 462003 Madhya Pradesh, India.

出版信息

Biomass Convers Biorefin. 2022 Jan 6:1-10. doi: 10.1007/s13399-021-02078-5.

Abstract

UNLABELLED

The threat of arsenic contamination in water is a challenging issue worldwide. Millions of people utilize untreated groundwater having high levels of arsenic in developing countries. Design Expert 6.0.8 has been used to design experiments and carried out statistical analysis for optimization of different parameters. It is of prime importance to develop cheap environment friendly bio-sorbent for protecting health of the poor from ill effects of arsenic. In the present investigation, we prepared bio-sorbent from the solid waste seed biomass of (M), (JF), and (JP). The characterization of bio-sorbents has been done by using different techniques namely FTIR and XRD. Arsenic concentration was estimated using ICP and adsorption parameters optimized for pH, adsorbent dose, and initial arsenic concentration. At pH 8.4, kinetics study of arsenic removal was M (94%), JF (93%), and JP (92%) for initial concentration of 2.5 ppm. The adsorption kinetics was well explained by Freundlich model and pseudo-second reaction order.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13399-021-02078-5.

摘要

未标注

水中砷污染的威胁是全球一个具有挑战性的问题。在发展中国家,数百万人使用未经处理的、砷含量高的地下水。已使用Design Expert 6.0.8设计实验并进行统计分析,以优化不同参数。开发廉价的环保生物吸附剂对于保护贫困人口的健康免受砷的不良影响至关重要。在本研究中,我们从(M)、(JF)和(JP)的固体废弃物种子生物质中制备了生物吸附剂。已使用傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)等不同技术对生物吸附剂进行了表征。使用电感耦合等离子体(ICP)估计砷浓度,并针对pH值、吸附剂剂量和初始砷浓度优化吸附参数。在pH 8.4时,对于初始浓度为2.5 ppm的砷去除动力学研究,M(94%)、JF(93%)和JP(92%)。吸附动力学可以用弗伦德利希模型和准二级反应动力学很好地解释。

补充信息

在线版本包含可在10.1007/s13399-021-02078-5获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f82f/8731182/5724952c3d39/13399_2021_2078_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验