Suppr超能文献

一种用于淡水水库蓝藻水华爆发预警的机器学习方法。

A machine learning approach for early warning of cyanobacterial bloom outbreaks in a freshwater reservoir.

机构信息

School of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea.

Office for Busan Region Management of the Nakdong River, Korea Water Resources Corporation (K-water), Busan 49300, Republic of Korea.

出版信息

J Environ Manage. 2021 Jun 15;288:112415. doi: 10.1016/j.jenvman.2021.112415. Epub 2021 Mar 26.

Abstract

Understanding the dynamics of harmful algal blooms is important to protect the aquatic ecosystem in regulated rivers and secure human health. In this study, artificial neural network (ANN) and support vector machine (SVM) models were used to predict algae alert levels for the early warning of blooms in a freshwater reservoir. Intensive water-quality, hydrodynamic, and meteorological data were used to train and validate both ANN and SVM models. The Latin-hypercube one-factor-at-a-time (LH-OAT) method and a pattern search algorithm were applied to perform sensitivity analyses for the input variables and to optimize the parameters of the models, respectively. The results indicated that the two models well reproduced the algae alert level based on the time-lag input and output data. In particular, the ANN model showed a better performance than the SVM model, displaying a higher performance value in both training and validation steps. Furthermore, a sampling frequency of 6- and 7-day were determined as efficient early-warning intervals for the freshwater reservoir. Therefore, this study presents an effective early-warning prediction method for algae alert level, which can improve the eutrophication management schemes for freshwater reservoirs.

摘要

了解有害藻类水华的动态对于保护受管制河流中的水生生态系统和保障人类健康非常重要。在本研究中,人工神经网络 (ANN) 和支持向量机 (SVM) 模型被用于预测淡水水库中藻类警报级别,以实现水华的早期预警。密集的水质、水动力和气象数据被用于训练和验证 ANN 和 SVM 模型。拉丁超立方单因素逐次逼近法 (LH-OAT) 和模式搜索算法分别用于对输入变量进行敏感性分析和优化模型参数。结果表明,两个模型都能很好地根据时滞输入和输出数据再现藻类警报级别。特别是,ANN 模型的表现优于 SVM 模型,在训练和验证步骤中都表现出更高的性能值。此外,确定了 6 天和 7 天的采样频率作为淡水水库的有效早期预警间隔。因此,本研究提出了一种有效的藻类警报级别预警预测方法,可改进淡水水库富营养化管理方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验