Suppr超能文献

有毒蓝藻水华的早期检测方法

Early Detection Methods for Toxic Cyanobacteria Blooms.

作者信息

Grant Lauren, Botelho Diane, Rehman Attiq

机构信息

Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada.

New Brunswick Research and Productivity Council (RPC), 921 College Hill Rd, Fredericton, NB E3B 6Z9, Canada.

出版信息

Pathogens. 2024 Nov 28;13(12):1047. doi: 10.3390/pathogens13121047.

Abstract

Harmful cyanobacterial blooms produce cyanotoxins which can adversely affect humans and animals. Without proper monitoring and detection programs, tragedies such as the loss of pets or worse are possible. Multiple factors including rising temperatures and human influence contribute to the increased likelihood of harmful cyanobacteria blooms. Current approaches to monitoring cyanobacteria and their toxins include microscopic methods, immunoassays, liquid chromatography coupled with mass spectrometry (LCMS), molecular methods such as qPCR, satellite monitoring, and, more recently, machine learning models. This review highlights current research into early detection methods for harmful cyanobacterial blooms and the pros and cons of these methods.

摘要

有害蓝藻水华会产生蓝藻毒素,会对人类和动物产生不利影响。如果没有适当的监测和检测程序,就有可能发生宠物死亡等悲剧,甚至更糟的情况。包括气温上升和人类影响在内的多种因素导致有害蓝藻水华发生的可能性增加。目前监测蓝藻及其毒素的方法包括显微镜检查法、免疫测定法、液相色谱-质谱联用(LCMS)、分子方法如定量聚合酶链反应(qPCR)、卫星监测,以及最近的机器学习模型。这篇综述重点介绍了目前对有害蓝藻水华早期检测方法的研究以及这些方法的优缺点。

相似文献

1
Early Detection Methods for Toxic Cyanobacteria Blooms.
Pathogens. 2024 Nov 28;13(12):1047. doi: 10.3390/pathogens13121047.
2
Identifying lakes at risk of toxic cyanobacterial blooms using satellite imagery and field surveys across the United States.
Sci Total Environ. 2023 Apr 15;869:161784. doi: 10.1016/j.scitotenv.2023.161784. Epub 2023 Jan 23.
5
Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina.
Toxins (Basel). 2018 Feb 24;10(2):92. doi: 10.3390/toxins10020092.
6
Multi-class cyanobacterial toxin analysis using hydrophilic interaction liquid chromatography-mass spectrometry.
J Chromatogr A. 2024 Dec 6;1738:465483. doi: 10.1016/j.chroma.2024.465483. Epub 2024 Nov 14.
10
Risk assessment of toxic cyanobacterial blooms in recreational waters: A comparative study of monitoring methods.
Harmful Algae. 2024 Sep;138:102683. doi: 10.1016/j.hal.2024.102683. Epub 2024 Jun 22.

本文引用的文献

1
Risk assessment of toxic cyanobacterial blooms in recreational waters: A comparative study of monitoring methods.
Harmful Algae. 2024 Sep;138:102683. doi: 10.1016/j.hal.2024.102683. Epub 2024 Jun 22.
4
Satellite Remote Sensing: A Tool to Support Harmful Algal Bloom Monitoring and Recreational Health Advisories in a California Reservoir.
Geohealth. 2024 Feb 23;8(2):e2023GH000941. doi: 10.1029/2023GH000941. eCollection 2024 Feb.
5
Proliferation and anatoxin production of benthic cyanobacteria associated with canine mortalities along a stream-lake continuum.
Sci Total Environ. 2024 Mar 20;917:170476. doi: 10.1016/j.scitotenv.2024.170476. Epub 2024 Jan 28.
7
One-Week-Ahead Prediction of Cyanobacterial Harmful Algal Blooms in Iowa Lakes.
Environ Sci Technol. 2023 Dec 12;57(49):20636-20646. doi: 10.1021/acs.est.3c07764. Epub 2023 Nov 27.
8
Understanding the Risks of Diffusion of Cyanobacteria Toxins in Rivers, Lakes, and Potable Water.
Toxins (Basel). 2023 Sep 20;15(9):582. doi: 10.3390/toxins15090582.
9
Occurrence, Distribution and Toxins of Benthic Cyanobacteria in German Lakes.
Toxics. 2023 Jul 25;11(8):643. doi: 10.3390/toxics11080643.
10
Sub-monthly time scale forecasting of harmful algal blooms intensity in Lake Erie using remote sensing and machine learning.
Sci Total Environ. 2023 Nov 20;900:165781. doi: 10.1016/j.scitotenv.2023.165781. Epub 2023 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验