Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark.
Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Vietnam.
J Anim Breed Genet. 2021 Sep;138(5):528-540. doi: 10.1111/jbg.12546. Epub 2021 Mar 28.
BLUP (best linear unbiased prediction) is the standard for predicting breeding values, where different assumptions can be made on variance-covariance structure, which may influence predictive ability. Herein, we compare accuracy of prediction of four derived-BLUP models: (a) a pedigree relationship matrix (PBLUP), (b) a genomic relationship matrix (GBLUP), (c) a weighted genomic relationship matrix (WGBLUP) and (d) a relationship matrix based on genomic features that consisted of only a subset of SNP selected on a priori information (GFBLUP). We phenotyped a commercial population of broilers for body weight (BW) in five successive weeks and genotyped them using a 50k SNP array. We compared predictive ability of univariate models using conservative cross-validation method, where each full-sib group was divided into two folds. Results from cross-validation showed, with WGBLUP model, a gain in accuracy from 2% to 7% compared with GBLUP model. Splitting the additive genetic matrix into two matrices, based on significance level of SNP (G : estimated with only set of SNP selected on significance level, G : estimated with the remaining SNP), led to a gain in accuracy from 1% to 70%, depending on the proportion of SNP used to define G . Thus, information from GWAS in models improves predictive ability of breeding values for BW in broilers. Increasing the power of detection of SNP effects, by acquiring more data or improving methods for GWAS, will help improve predictive ability.
最佳线性无偏预测(BLUP)是预测育种值的标准方法,其中可以对方差协方差结构做出不同的假设,这可能会影响预测能力。在此,我们比较了四种衍生 BLUP 模型的预测准确性:(a)系谱关系矩阵(PBLUP),(b)基因组关系矩阵(GBLUP),(c)加权基因组关系矩阵(WGBLUP)和(d)基于基因组特征的关系矩阵,该矩阵仅由根据先验信息选择的 SNP 的子集组成(GFBLUP)。我们对五个连续周的肉鸡体重(BW)进行了表型测定,并使用 50k SNP 阵列对其进行了基因分型。我们使用保守的交叉验证方法比较了单变量模型的预测能力,其中每个全同胞组被分为两部分。交叉验证的结果表明,与 GBLUP 模型相比,WGBLUP 模型的准确性提高了 2%至 7%。根据 SNP 的显著水平(G:仅使用 SNP 子集估计,G:使用剩余 SNP 估计)将加性遗传矩阵分为两个矩阵,准确性提高了 1%至 70%,具体取决于用于定义 G 的 SNP 比例。因此,GWAS 中的信息提高了肉鸡 BW 育种值的预测能力。通过获得更多数据或改进 GWAS 方法,提高 SNP 效应检测的能力,将有助于提高预测能力。