Suppr超能文献

利用生物学先验知识可增强对奶牛品种内部和之间复杂性状的遗传结构及基因组预测的理解。

Use of biological priors enhances understanding of genetic architecture and genomic prediction of complex traits within and between dairy cattle breeds.

作者信息

Fang Lingzhao, Sahana Goutam, Ma Peipei, Su Guosheng, Yu Ying, Zhang Shengli, Lund Mogens Sandø, Sørensen Peter

机构信息

Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark.

Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.

出版信息

BMC Genomics. 2017 Aug 10;18(1):604. doi: 10.1186/s12864-017-4004-z.

Abstract

BACKGROUND

A better understanding of the genetic architecture underlying complex traits (e.g., the distribution of causal variants and their effects) may aid in the genomic prediction. Here, we hypothesized that the genomic variants of complex traits might be enriched in a subset of genomic regions defined by genes grouped on the basis of "Gene Ontology" (GO), and that incorporating this independent biological information into genomic prediction models might improve their predictive ability.

RESULTS

Four complex traits (i.e., milk, fat and protein yields, and mastitis) together with imputed sequence variants in Holstein (HOL) and Jersey (JER) cattle were analysed. We first carried out a post-GWAS analysis in a HOL training population to assess the degree of enrichment of the association signals in the gene regions defined by each GO term. We then extended the genomic best linear unbiased prediction model (GBLUP) to a genomic feature BLUP (GFBLUP) model, including an additional genomic effect quantifying the joint effect of a group of variants located in a genomic feature. The GBLUP model using a single random effect assumes that all genomic variants contribute to the genomic relationship equally, whereas GFBLUP attributes different weights to the individual genomic relationships in the prediction equation based on the estimated genomic parameters. Our results demonstrate that the immune-relevant GO terms were more associated with mastitis than milk production, and several biologically meaningful GO terms improved the prediction accuracy with GFBLUP for the four traits, as compared with GBLUP. The improvement of the genomic prediction between breeds (the average increase across the four traits was 0.161) was more apparent than that it was within the HOL (the average increase across the four traits was 0.020).

CONCLUSIONS

Our genomic feature modelling approaches provide a framework to simultaneously explore the genetic architecture and genomic prediction of complex traits by taking advantage of independent biological knowledge.

摘要

背景

更好地理解复杂性状背后的遗传结构(例如,因果变异的分布及其效应)可能有助于基因组预测。在此,我们假设复杂性状的基因组变异可能在基于“基因本体论”(GO)分组的基因所定义的基因组区域子集中富集,并且将这种独立的生物学信息纳入基因组预测模型可能会提高其预测能力。

结果

分析了荷斯坦(HOL)和泽西(JER)奶牛的四个复杂性状(即产奶量、乳脂率、乳蛋白率和乳腺炎)以及推算的序列变异。我们首先在HOL训练群体中进行了全基因组关联研究(GWAS)后的分析,以评估每个GO术语所定义的基因区域中关联信号的富集程度。然后,我们将基因组最佳线性无偏预测模型(GBLUP)扩展为基因组特征BLUP(GFBLUP)模型,包括一个额外的基因组效应,用于量化位于基因组特征中的一组变异的联合效应。使用单个随机效应的GBLUP模型假设所有基因组变异对基因组关系的贡献均等,而GFBLUP根据估计的基因组参数在预测方程中为各个基因组关系赋予不同的权重。我们的结果表明,与产奶量相比,与免疫相关的GO术语与乳腺炎的关联更强,并且与GBLUP相比,几个具有生物学意义 的GO术语通过GFBLUP提高了四个性状的预测准确性。品种间基因组预测的改善(四个性状的平均增幅为0.161)比荷斯坦牛群体内的改善(四个性状的平均增幅为0.020)更为明显。

结论

我们的基因组特征建模方法提供了一个框架,通过利用独立的生物学知识同时探索复杂性状的遗传结构和基因组预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cf1/5553760/e8743e3c1e2c/12864_2017_4004_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验