Suppr超能文献

优化算法在集群中的应用。

Application of Optimization Algorithms in Clusters.

作者信息

Srivastava Ruby

机构信息

Bioinformatics, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.

出版信息

Front Chem. 2021 Mar 12;9:637286. doi: 10.3389/fchem.2021.637286. eCollection 2021.

Abstract

The structural characterization of clusters or nanoparticles is essential to rationalize their size and composition-dependent properties. As experiments alone could not provide complete picture of cluster structures, so independent theoretical investigations are needed to find out a detail description of the geometric arrangement and corresponding properties of the clusters. The potential energy surfaces (PES) are explored to find several minima with an ultimate goal of locating the global minima (GM) for the clusters. Optimization algorithms, such as genetic algorithm (GA), basin hopping method and its variants, self-consistent basin-to-deformed-basin mapping, heuristic algorithm combined with the surface and interior operators (HA-SIO), fast annealing evolutionary algorithm (FAEA), random tunneling algorithm (RTA), and dynamic lattice searching (DLS) have been developed to solve the geometrical isomers in pure elemental clusters. Various model or empirical potentials (EPs) as Lennard-Jones (LJ), Born-Mayer, Gupta, Sutton-Chen, and Murrell-Mottram potentials are used to describe the bonding in different type of clusters. Due to existence of a large number of homotops in nanoalloys, genetic algorithm, basin-hopping algorithm, modified adaptive immune optimization algorithm (AIOA), evolutionary algorithm (EA), kick method and Knowledge Led Master Code (KLMC) are also used. In this review the optimization algorithms, computational techniques and accuracy of results obtained by using these mechanisms for different types of clusters will be discussed.

摘要

团簇或纳米颗粒的结构表征对于阐明其尺寸和组成依赖性性质至关重要。由于仅靠实验无法提供团簇结构的完整图像,因此需要独立的理论研究来详细描述团簇的几何排列及其相应性质。通过探索势能面(PES)来寻找多个极小值,最终目标是确定团簇的全局极小值(GM)。已经开发了多种优化算法,如遗传算法(GA)、盆地跳跃法及其变体、自洽盆地到变形盆地映射、结合表面和内部算子的启发式算法(HA - SIO)、快速退火进化算法(FAEA)、随机隧穿算法(RTA)和动态晶格搜索(DLS),以解决纯元素团簇中的几何异构体问题。各种模型或经验势(EP),如 Lennard - Jones(LJ)势、Born - Mayer 势、Gupta 势、Sutton - Chen 势和 Murrell - Mottram 势,被用于描述不同类型团簇中的键合。由于纳米合金中存在大量同拓扑异构体,遗传算法、盆地跳跃算法、改进的自适应免疫优化算法(AIOA)、进化算法(EA)、踢法和知识引导主代码(KLMC)也被使用。在这篇综述中,将讨论用于不同类型团簇的这些机制所获得的优化算法、计算技术和结果的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04e/7994592/6ac5adf3ae18/fchem-09-637286-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验