Doctorado en Fisicoquı́mica Molecular, Facultad de Ciencias Exactas , Universidad Andres Bello , República 275 (2do piso) , Santiago , 8370146 , Chile.
Departamento de Ciencias Quı́micas, Facultad de Ciencias Exactas, Computacional and Theoretical Chemistry Group , Universidad Andres Bello , República 275 (3er piso) , Santiago , 8370146 , Chile.
J Chem Theory Comput. 2019 Feb 12;15(2):1463-1475. doi: 10.1021/acs.jctc.8b00772. Epub 2019 Jan 3.
A novel program for the search of global minimum structures of atomic clusters and molecules in the gas phase, AUTOMATON, is introduced in this work. This program involves the following: first, the generation of an initial population, using a simplified probabilistic cellular automaton method, which allows easy control of the adequate distribution of atoms in space; second, the fittest individuals are selected to evolve, through genetic operations (mating and mutations), until the best candidate for a global minimum surfaces. In addition, we propose a simple way to build the descendant structures by establishing a ranking of genes to be inherited. Thus, by means of a chemical formula checker procedure, genes are transferred to the offspring, ensuring that they always have the appropriate type and number of atoms. It is worth noting that a fraction of the fittest group is subject to mutation operations. This program also includes algorithms to identify duplicate structures: one based on geometric similarity and another on the similar distribution of atomic charges. The effectiveness of the program was evaluated in a group of 45 molecules, considering organic and organometallic compounds (benzene, cyclopentadienyl anion, and ferrocene), Zintl ion clusters [SnGe Bi ] ( n = 1-4 and m = 0-(9- n)), star-shaped clusters (LiE, E = BH, C, Si, Ge) and a variety of boron-based clusters. The global minimum and the lowest-energy isomers reported in the literature were found for all the cases considered in this article. These results successfully prove AUTOMATON's effectiveness on the identification of energetically preferred structures of a wide variety of chemical species.
本文介绍了一种用于气相中原子团簇和分子全局最小结构搜索的新型程序 AUTOMATON。该程序包括以下步骤:首先,使用简化的概率细胞自动机方法生成初始种群,该方法允许轻松控制原子在空间中的适当分布;其次,通过遗传操作(交配和突变)选择最适合的个体进行进化,直到找到全局最小表面的最佳候选者。此外,我们提出了一种通过建立基因排序来构建后代结构的简单方法,以便进行遗传。因此,通过化学公式检查程序,基因可以传递给后代,确保它们始终具有适当的原子类型和数量。值得注意的是,一部分最适合的群体受到突变操作的影响。该程序还包括识别重复结构的算法:一种基于几何相似性,另一种基于原子电荷分布的相似性。我们在一组 45 个分子中评估了该程序的有效性,其中包括有机和有机金属化合物(苯、环戊二烯阴离子和二茂铁)、Zintl 离子簇[SnGeBi](n=1-4 和 m=0-(9-n))、星形簇(LiE,E=BH、C、Si、Ge)和各种硼基簇。本文考虑的所有情况下都找到了文献中报道的全局最小和最低能量异构体。这些结果成功证明了 AUTOMATON 在识别各种化学物质的能量优先结构方面的有效性。