Suppr超能文献

利用从废弃聚四氟乙烯中低温一步化学合成碳化钛纳米颗粒的方法驯服锂硫电池中的多硫化物

Taming Polysulfides in an Li-S Battery With Low-Temperature One-step Chemical Synthesis of Titanium Carbide Nanoparticles From Waste PTFE.

作者信息

Liu Suyao, Luo Jun, Xiong Yuting, Chen Zhe, Zhang Kailong, Rui Guofeng, Wang Liangbiao, Hu Guang, Jiang Jinlong, Mei Tao

机构信息

Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, School of Chemical Engineering, Huaiyin Institute of Technology, Huaian, China.

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China.

出版信息

Front Chem. 2021 Mar 11;9:638557. doi: 10.3389/fchem.2021.638557. eCollection 2021.

Abstract

In this work, titanium carbide (TiC) nanoparticles have been successfully synthesized at much lower temperatures of 500°C using cheaper starting materials, such as waste polytetrafluoroethylene (PTFE) (carbon source) and titanium and metallic sodium, than the traditional carbothermal reduction of TiO at 1,800°C. An XRD pattern proved the formation of face-centered cubic TiC, and TEM images showed the obtained TiC nanoparticles with an average size of approximately 50 nm. In addition, the separator coated with TiC nanoparticles as an active material of interlayer effectively mitigates the shuttling problem by taming the polysulfides in Li-S batteries compared with a traditional celgard separator. The assembled cell realizes good cycling stability with 501 mAh g and a low capacity fading of 0.1% per cycle after 300 cycles at 1 C due to high utilization of the sulfur-based active species.

摘要

在这项工作中,使用比传统的在1800°C下碳热还原TiO更便宜的起始原料,如废聚四氟乙烯(PTFE)(碳源)、钛和金属钠,在500°C的更低温度下成功合成了碳化钛(TiC)纳米颗粒。XRD图谱证明形成了面心立方TiC,TEM图像显示所获得的TiC纳米颗粒的平均尺寸约为50nm。此外,与传统的Celgard隔膜相比,涂覆有TiC纳米颗粒作为层间活性材料的隔膜通过抑制锂硫电池中的多硫化物有效地减轻了穿梭问题。由于硫基活性物质的高利用率,组装的电池在1C下300次循环后实现了良好的循环稳定性,容量为501mAh g,每个循环的低容量衰减为0.1%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ee9/7991077/44003817d1b9/fchem-09-638557-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验